当x?32时,f?x??x2?2x?4??x?1??5, 2??3??上单调递减. (2分) 2?所以f?x?在???,?1?上单调递减,在??1,当x?32时,f?x??x2?2x?2??x?1??1, 2?3?fx所以??在?,???上单调递增. (3分)
?2?因为函数f?x?的图象在R上不间断,
所以f?x?的单调减区间是???,?1?,单调增区间是??1,???. (4分) (2)x?ax?3?1?2x?3对任意x???1,0?恒成立.
2因为x???1,0?,a?0,所以ax?3?0,
故不等式可化为x2?ax?3?1?2x?3,即a??x?1?2, x所以问题转化为不等式a??x?1?2对任意x???1,0?恒成立. (6分) x又y??x?1?2在??1,0?上单调递减, x所以y??x?11?2????1??+2?2, x?1所以a?2. (7分)
?2x?ax?4,x???2(3)f?x??x?ax?3?1???x2?ax?2,x???显然,当x?3,a,其中a?0. (8分) 3,a332时,f?x??x?ax?3至多有2个不同的零点,且当x?时,
aaf?x??x2?ax?2至多有2个不同的零点,
又f?x?有4个不同的零点,
所以f?x?在????,3??3??a??和??a,????上都各有2个不同的零点, ??a3?a2?a????f??4???a?2???4?0,???a??2???0,?2?a,?所以??且????f??3?2??1???a???0,即?0,??a????f?3??2? ?a???0,???a3??f??3???a?2?a,??0,???a2?4?a?a2?2?0,又a?0,解得22?a?3,
所以实数a的取值范围是22?a?3. (11分)
10分) (