例1.58:设两个随机事件A,B相互独立,已知仅有A发生的概率为
,P(B)=
。
1414,仅有B发生的概率为,则P(A)=
例1.59:若两事件A和B相互独立,且满足P(AB)=P(AB), P(A)=0.4,求P(B).
例1.60:设两两相互独立的三事件A,B和C满足条件;ABC=Ф,(A)P=P(B)=P(C)<则P(A)=
。
12,且已知P(A?B?C)?916,
例1.61:A发生的概率是0.6,B发生的概率是0.5,问A,B同时发生的概率的范围?
例1.62:设某类型的高炮每次击中飞机的概率为0.2,问至少需要多少门这样的高炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上。
例1.63:由射手对飞机进行4次独立射击,每次射击命中的概率为0.3,一次命中时飞机被击落的概率为 0.6,至少两次命中时飞机必然被击落,求飞机被击落的概率。
例1.64:将一骰子掷m+n次,已知至少有一次出6点,求首次出6点在第n次抛掷时出现的概率。
例1.65:两只一模一样的铁罐里都装有大量的红球和黑球,其中一罐(取名“甲罐”)内的红球数与黑球数之比为2:1,另一罐(取名“乙罐”)内的黑球数与红球数之比为2:1 。今任取一罐并从中取出50只球,查得其中有30只红球和20只黑球,则该罐为“甲罐”的概率是该罐为“乙罐”的概率的 (A) 154倍 (B)254倍 (C)798倍 (D)1024倍
第二章 随机变量及其分布
第一节 基本概念
在许多试验中,观察的对象常常是一个随同取值的量。例如掷一颗骰子出现的点数,它本身就是一个数值,因此P(A)这个函数可以看作是普通函数(定义域和值域都是数字,数字到数字)。但是观察硬币出现正面还是反面,就不能简单理解为普通函数。但我们可以通过下面的方法使它与数值联系起来。当出现正面时,规定其对应数为“1”;而出现反面时,规定其对应数为“0”。于是
X?X(?)??1,当正面出现??0,当反面出现
称X为随机变量。又由于X是随着试验结果(基本事件?)不同而变化的,所以X实际上是基本事件?的函数,即X=X(ω)。同时事件A包含了一定量的ω(例如古典概型中A包含了ω1,ω2,?ωm,共m个基本事件),于是P(A)可以由P(X(ω))来计算,这是一个普通函数。
定义 设试验的样本空间为?,如果对?中每个事件?都有唯一的实数值X=X(ω)与之对应,则称X=X(ω)为随机变量,简记为X。
有了随机变量,就可以通过它来描述随机试验中的各种事件,能全面反映试验的情况。这就使得我们对随机现象的研究,从前一章事件与事件的概率的研究,扩大到对随机变量的研究,这样数学分析的方法也可用来研究随机现象了。
一个随机变量所可能取到的值只有有限个(如掷骰子出现的点数)或可列无穷多个(如电话交换台接到的呼唤次数),则称为离散型随机变量。像弹着点到目标的距离这样的随机变量,它的取值连续地充满了一个区间,这称为连续型随机变量。
1、随机变量的分布函数
(1)离散型随机变量的分布率
设离散型随机变量X的可能取值为Xk(k=1,2,?)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,?,
则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出:
Xx1,x2,?,xk,?|P(X?xk)p1,p2,?,pk,?。 显然分布律应满足下列条件: (1)pk?0,k?1,2,?,
?(2)
?k?1pk?1。
例2.1:投骰子,出现偶数的概率?
例2.2:4黑球,2白球,每次取一个,不放回,直到取到黑为止,令X(ω)为“取白球的数”,求X的分布律。 例2.3:若干个容器,每个标号1-3,取出某号容器的概率与该号码成反比,令X(ω)表示取出的号码,求X的分布律。
(2)分布函数
对于非离散型随机变量,通常有P(X?x)?0,不可能用分布率表达。例如日光灯管的寿命X,
P(X?x0)?0。所以我们考虑用X落在某个区间(a,b]内的概率表示。
定义 设X为随机变量,x是任意实数,则函数
F(x)?P(X?x)
称为随机变量X的分布函数。
P(a?X?b)?F(b)?F(a) 可以得到X落入区间(a,b]的概率。也就是说,分布函数完整地描述了随机
变量X随机取值的统计规律性。
分布函数F(x)是一个普通的函数,它表示随机变量落入区间(– ∞,x]内的概率。
F(x)的图形是阶梯图形,x1,x2,?是第一类间断点,随机变量X在xk处的概率就是F(x)在xk处的跃度。分布函数具有如下性质:
1° 0?F(x)?1, ???x???;
2° F(x)是单调不减的函数,即x1?x2时,有 F(x1)?F(x2); 3° F(??)?limF(x)?0, F(??)?limF(x)?1;
x???x???4° F(x?0)?F(x),即F(x)是右连续的; 5° P(X?x)?F(x)?F(x?0)。
例2.4:设离散随机变量X的分布列为
X?1,0,1,2P1111,,,8842,
求X的分布函数,并求P(X?12),P(1?X?32),P(1?X?32)。
例2.5:设随机变量X的分布函数为
?Ax?F(x)??1?x??0x?0x?0
其中A是一个常数,求 (1) 常数A
(2)P(1?X?2)
(3)连续型随机变量的密度函数
定义 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 F(x)??x??f(x)dx,
则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数,简称概率密度。f(x)的图形是一条曲线,称为密度(分布)曲线。
由上式可知,连续型随机变量的分布函数F(x)是连续函数。 所以,
P(x1?X?x2)?P(x1?X?x2)?P(x1?X?x2)?P(x1?X?x2)?F(x2)?F(x1)
密度函数具有下面4个性质: 1° f(x)?0。 2°
?????f(x)dx?1。
的几何意义;在横轴上面、密度曲线下面的全部面积等于1。
F(??)??????f(x)dx?1如果一个函数f(x)满足1°、2°,则它一定是某个随机变量的密度函数。
x23° P(x1?X?x2)=F(x2)?F(x1)=?f(x)dx。
x14° 若f(x)在x处连续,则有F?(x)?f(x)。
P(x?X?x?dx)?f(x)dx
它在连续型随机变量理论中所起的作用与P(X?xk)?pk在离散型随机变量理论中所起的作用相类似。 E??,??A?P(A),(古典概型,五大公式,独立性)
X(?)?X(?)?x?F(x)?P(X?x)
对于连续型随机变量X,虽然有P(X?x)?0,但事件(X?x)并非是不可能事件?。
x?hP(X?x)?P(x?X?x?h)??xf(x)dx
令h?0,则右端为零,而概率P(X?x