(2)检验参数的显著性:当取??0.05时,查t分布表得t0.025(12?4)?2.306,与t统计量对比,除了截距项外,各回归系数对应的t统计量的绝对值均大于临界值,表明在这样的显著性水平下,回归系数显著不为0。
22(3)检验整个回归方程的显著性:模型的R?0.973669,R?0.963794,说明可决
系数较高,对样本数据拟合较好。由于F=98.60668,而当取??0.05时,查F分布表得F0.05(4?1,12?4)?4.07,因为F=98.60668>4.07,应拒绝H0:?2??3??4?0,说明X、X、X联合起来对Y确有显著影响。
2(4)计算总成本对产量的非线性相关系数:因为R?0.973669因此总成本对产量的
23非线性相关系数为R?0.973669或R=0.9867466
(5)评价:虽然经t检验各个系数均是显著的,但与临界值都十分接近,说明t检验只是勉强通过,其把握并不大。如果取??0.01,则查t分布表得t0.005(12?4)?3.3554,这时各个参数对应的t统计量的绝对值均小于临界值,则在??0.01的显著性水平下都应接受
8.9 利用Excel输入X、y数据,用y对X回归,估计参数结果为
2H0:?j?0的原假设。
?i?5.73?0.314xi y t值=(9.46)(-6.515) R?0.794 R?0.775
整理后得到:y??307.9693?e?0.314x
22第9章 时间序列分析
练习:
9.1 某汽车制造厂2003年产量为30万辆。
(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车
产量将达到多少?
(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到
7.8%,问以后9年应以怎样的速度增长才能达到预定目标?
(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?
9.2 某地区社会商品零售额1988—1992年期间(1987年为基期)每年平均增长10%,1993—1997年期间每年平均增长8.2%,1998—2003年期间每年平均增长6.8%。问2003年与1987年相比该地区社会商品零售额共增长多少?年平均增长速度是多少?若1997年社会商品零售额为30亿元,按此平均增长速度,2004年的社会商品零售额应为多少?
9.3某地区国内生产总值在1991—1993年平均每年递增12%,1994--1997年平均每
年递增10%,1998--2000年平均每年递增8%。试计算:
(1)该地区国内生产总值在这10年间的发展总速度和平均增长速度;
(2)若2000年的国内生产总值为500亿元,以后平均每年增长6%,到2002年可达多少?
(3)若2002年的国内生产总值的计划任务为570亿元,一季度的季节比率为105%,则2002年一季度的计划任务应为多少?
9.4 某公司近10年间股票的每股收益如下(单位:元):
0.64,0.73,0.94,1.14,1.33,1.53,1.67,1.68,2.10,2.50 (1)分别用移动平均法和趋势方程预测该公司下一年的收益;
(2)通过时间序列的数据和发展趋势判断,是否是该公司应选择的合适投资方向? 9.5某县2000—2003年各季度鲜蛋销售量数据如下(单位:万公斤) 年份 一季度 二季度 三季度 四季度 2000 13.1 13.9 7.9 2001 10.8 11.5 9.7 2002 14.6 17.5 16.0 2003 18.4 20.0 16.9 (1)用移动平均法消除季节变动; (2