数学教育学复习材料(新编数学教学论涂荣豹、王光明、宁连华)

认知结构中已有的适当知识的“适当知识”,是指学生认知结构中已有的、与新知识存在某种联系的那些知识。(它们可以是数学知识,也可以是其他方面的知识、经验或者某种观念。)(43)

所谓“适当”就是与新知识有关。与新知识有关的适当知识,又称为新知识有意义学习的生长点或固着点。(44)

建立非人为和实质性的联系

学生所学的新知识与认知结构已有的适当知识,本身就存在某种固有的联系,这种联系就是非人为和实质性的,它们只是目前存在于不同的载体中,学生如果能把两者原有的非人为和实质性的联系认识出来、建立起来,也就建立起了非人为和实质性的联系。(44)

如果学生在学习数学时,能把新旧知识之间在数学体系中的内在联系建立起来,就是在新旧知识之间建立起了非人为和实质性的联系。反之,如果学生把新知识与自己认知结构中不适当、不相关的知识强行联系起来,那不是非人为和实质性的联系,而是人为和非实质的联系。(44)

要建立非认为和实质性联系,就是对某一数学认知内容,学生的认知结构中已经有了一种数学语言符号的表达形式,现在的新知识则是同一认知内容的另一数学语言符号的表达形式,那么学生如果能把这些不同语言符号的表达形式联系起来,把它们所代表的同一认知内容认识出来,就是建立起了非人为和实质性的联系。(44)

由于把握了同一数学对象的不同表达形式,一种解决问题的方法就应运而生。这说明,尽管数学语言符号的外表形式不同,但学生能够透过表面形式认识出两者实质相同,就是建立了实质性联系,这样产生的学习是有意义学习。(45)

数学有意义学习的条件

数学有意义学习的条件分为客观条件与主观条件两方面。(45) 目前合理的数学学习材料满足具有逻辑意义这一客观条件是不言而喻的。

数学有意义学习的主观条件是:1)学生必须具备数学有意义学习的心向;2)新知识对学习者必须有潜在意义;3)学习者必须具备有意义学习的思维潜能;4)数学有意义学习的结果。(45)数学有意义学习的基本形式(简答)

数学有意义学习的基本形式有:数学的表征学习,数学的概念学习,数学的同化学习和数学的顺应学习。(46)

数学的表征学习是将数学的名词、符号所代表的具体对象,在认知结构里建立起等值关系。这种具体对象称为数学名词、符号的指代物。(名词解释)

数学表征学习的特点是,对数学名词符号所获得的表征意义只代表特殊的和单个的事物。(46)

17

数学的表征学习大部分是认知水平上的学习,而不像其他学科的代表学习基础上是感知水平上的,这是数学学习与其他学科学习的一个很大区别。(原因在于大部分数学名词符号的指代物本身就是抽象的,不是凭感知可把握的,所以数学的表征学习比起一般学科的代表学习来是较高级的学习。这也是数学比其他学科难学的原因之一。)(47)

对数学的名词符号一般从表征学习开始,但仅仅只达到表征学习的水平是不行的,因为指代物毕竟不是相应数学名词符号的本质属性,只停留在表征学习水平,容易导致非本质性幻泛化的错误。(47)

数学是抽象性很强的学科,早期进行表征学习,可以增强数学名词符号的直观性,获得有关它们的直观北京和丰富经验,有关的指代物可以成为掌握相关数学对象抽象意义的必要阶梯,为数学名词符号的抽象意义提供直观模型。(47)

数学的概念学习

数学名词符号不仅代表了数学概念的对象(指代物),同时也代表了数学概念的抽象意义和抽象关系。(47)(这就是说,数学的名词符号不仅代表了单个的数学对象,更代表了一类数学对象,这类数学对象的全体形成了一个数学概念,相应的名词符号就是这个数学概念的表示形式。)(填空)

数学的概念学习是要获得数学名词的概念意义,即掌握它们所代表的一类事物的共同的本质属性。(填空)

数学的概念学习的特点是,数学名词符号所获得的概念意义代表了一类事物,的共同本质属性,在概念学习水平上,数学的名词符号代表了一类事物,在代表学习水平上,数学的名词符号只代表单个或特殊的事物。(47)

同样的数学名词符号,存在着两种不同水平的有意义学习:表征学习水平上的有意义学习和概念学习水平上的有意义学习。(48)(但是在数学学习中仅仅达到表征学习水平上的有意义的学习是不够的,必须达到概念学习水平上的有意义学习才是真正获得了数学对象的意义,才是真正的数学有意义学习。)数学的同化学习

数学内容之间的关系有:类属关系、总括关系、并列关系。(48) 建立在内容之间的关系基础上的数学学习形式,主要有两种:同化学习和顺应学习。(48)

同化的概念是指把给定的东西整合到一个早先就存在的结构之中。(48)

所谓同化学习,就是当新的数学内容输入以后,主体并不是消极地接受他们,而是利用已有的数学认知结构对新知识内容进行改造,使新内容纳入到原有的数学认知结构中。(48)(填空)

18

在同化的过程中,主要是辨识新旧知识的联系,并由原有的旧知识作为生长点或固着点,把新知识归属于原认知结构,同时使原认知结构得到分化和扩充。(48) 同化学习的例子。

如:学习用配方法解一元二次方程。

就认知结构中已有知识而言,对于其是类属关系的新知识的学习主要是同化,对与其是总括关系和并列关系的新知识的学习有一部分是同化。(48)

一般来说。从学习新知识到练习中对新知识的保持是再认性同化;在其他知识中又遇见那个新知识时而对新知识的学习是再生性同化;在各种新问题中不断地遇到那个新知识以后对新知识的学习是概括性同化。(49)

数学的顺应学习

如果数学新知识在原有的数学认知结构中没有密切联系的适当知识,这时如果要把新知识纳入到认知结构中,像同化学习那样通过与相关旧知识建立联系来获得知识的意义就比较困难。这时必须要对原来认知结构进行改组,使之与新知识内容相适应,从而把它纳入进去,这个过程叫作顺应。(49)(填空)

如果数学新知识在原有的数学认知结构中没有密切联系的适当知识,这时如果要把新知识纳入到认知结构中,必须要对原来认知结构进行改组,使之与新知识内容相适应,从而把它纳入进去,这个过程叫作顺应。(填空)

初一学生学习代数,就是顺应学习的过程。(初一学生此前只学过算数。)

这就使得教学中需要根据新旧知识间的关系来认识新知识学习的过程,决定适当的新知识学习的方法。(49)4.3学生的认知发展理论(自学)4.4数学建构主义学习理论

建构主义思想最早是瑞士心理学家皮亚杰提出来的。(选择题)他认为,人类对逻辑、数学、物理的认识,都是不断建构的产物。

19

从最初的格局建构成结构,结构对认识起中介作用,结构不断地建构;从比较简单的结构到更为复杂的结构,其建构过程依赖于主体的不断活动。高级结构的建构是在解决问题的过程中,依靠主体的活动来实现和完成的。(55)

数学的对象主要是抽象的形式化的思想材料,数学的活动也主要是思辨的思想活动,因此数学新知识的学习就是典型的建构主义学习的过程。(55)(简述)

4.4.1建构主义学习观

数学建构主义学习的实质是:主体通过对抽象的形式化思想材料的思维构造,在心理上建构这些思想材料的意义。(55)

所谓思维构造,既是指主体在多方位地把新知识多方面的各种因素建立联系的过程中,获得新知识的意义。(见55)

建构学习是以学习者为参照中心的自身思维构造的过程,是主动活动的过程,是积极创建的过程,最终所建构的意义固着于亲身经历的活动背景,溯源于自己熟悉的生活经验,扎根于自己已有的认知结构。(55)

建构是新知识的意义同时建立和构造的过程。(55)

整理完

20

联系客服:779662525#qq.com(#替换为@)