第一章 概论 复习要点
本章的复习要点是:
数据、数据元素、数据结构(包括逻辑结构、存储结构)以及数据类型的概念、数据的逻辑结构分为哪两大类,及其逻辑特征、数据的存储结构可用的四种基本存储方法。 时间复杂度与渐近时间复杂度的概念,如何求算法的时间复杂度。 可能出的题目有选择题、填空题或简答题。如:
.........是数据的基本单位,.........是具有独立含义的最小标识单位。
什么是数据结构?什么是数据类型?
数据的............与数据的存储无关,它是独立于计算机的。
数据的存储结构包括顺序存储结构、链式存储结构.......................、...........................
设n为正整数,利用大O记号,将该程序段的执行时间表示为n的函数,则下列程序段的时间复杂度可表示为:(....) x=91;y=100; while(y>10)
if(x>100){x=x-10;y--;} else x++;
A. O(1) B.O(x) C.O(y) D.O(n) 等等。
顺便一提,基本概念和基本理论的掌握是得分的基本手段。
第二章:线性表(包括习题与答案及要点)
转摘www.Ezikao.com
--------------------------------------------------------------------------------
本章的重点是掌握顺序表和单链表上实现的各种基本算法及相关的时间性能分析,难点是使用本章所学的基本知识设计有效算法解决与线性表相关的应用问题。
要求达到<识记>层次的内容有:线性表的逻辑结构特征;线性表上定义的基本运算,并利用基本运算构造出较复杂的运算。
要求达到<综合应用>层次的内容有:顺序表的含义及特点,顺序表上的插入、删除操作及其平均时间性能分析,解决简单应用问题。
链表如何表示线性表中元素之间的逻辑关系;单链表、双链表、循环链表链接方式上的区别;单链表上实现的建表、查找、插入和删除等基本算法及其时间复杂度。循环链表上尾指针取代头指针的作用,以及单循环链表上的算法与单链表上相应算法的异同点。双链表的定义和相关算法。利用链表设计算法解决简单应用问题。
要求达到<领会>层次的内容就是顺序表和链表的比较,以及如何选择其一作为其存储结构才能取得较优的时空性能。
--------------------------------------------------------------------------------
线性表的逻辑结构特征是很容易理解的,如其名,它的逻辑结构特征就好象是一条线,上面打了一个个结,很形象的,如果这条线上面有结,那么它就是非空表,只能有一个开始结点,有且只能有一个终端结点,其它的结前后所相邻的也只能是一个结点(直接前趋和直接后继)。
关于线性表上定义的基本运算,主要有构造空表、求表长、取结点、查找、插入、删除等。
-------------------------------------------------------------------------------- 线性表的逻辑结构和存储结构之间的关系。在计算机中,如何把线性表的结点存放到存储单元中,就有许多方法,最简单的方法就是按顺序存储。就是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。在存储单元中的各元素的物理位置和逻辑结构中各结点相邻关系是一致的。
在顺序表中实现的基本运算主要讨论了插入和删除两种运算。相关的算法我们通过练习掌握。对于顺序表的插入和删除运算,其平均时间复杂度均为O(n)。
-------------------------------------------------------------------------------- 线性表的链式存储结构。它与顺序表不同,链表是用一组任意的存储单元来存放线性表的结点,这组存储单元可以分布在内存中任何位置上。因此,链表中结点的逻辑次序和物理次序不一定相同。所以为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还存储了其后继结点的地址信息(即指针或链)。这两部分信息组成链表中的结点结构。 一个单链表由头指针的名字来命名。
对于单链表,其操作运算主要有建立单链表(头插法、尾插法和在链表开始结点前附加一个头结点的算法)、查找(按序号和按值)、插入运算、删除运算等。以上各运算的平均时间复杂度均为O(n).其主要时间是耗费在查找操作上。
--------------------------------------------------------------------------------
循环链表是一种首尾相接的链表。也就是终端结点的指针域不是指向NULL空而是指向开始结点(也可设置一个头结点),形成一个环。采用循环链表在实用中多采用尾指针表示单循环链表。这样做的好处是查找头指针和尾指针的时间都是O(1),不用遍历整个链表了。 判别链表终止的条件也不同于单链表,它是以指针是否等于某一指定指针如头指针或尾指针来确定。
-------------------------------------------------------------------------------- 双链表就是双向链表,就是在单链表的每个结点里再增加一个指向其直接前趋的指针域prior,这样形成的链表就有两条不同方向的链。使得从已知结点查找其直接前趋结点可以和查找其直接后继结点的时间一样缩短为O(1)。
双链表一般也由头指针head惟一确定。双链表也可以头尾相链接构成双(向)循环链表。
-------------------------------------------------------------------------------- 关于顺序表和链表的比较,请看下表: 具体要求 顺序表 链表
基于空间 适于线性表长度变化不大,易于事先确定其大小时采用。 适于当线性表长度变化大,难以估计其存储规模时采用。
基于时间 由于顺序表是一种随机存储结构,当线性表的操作主要是查找时,宜采用。 链表
中对任何位置进行插入和删除都只需修改指针,所以这类操作为主的线性表宜采用链表做存储结构。若插入和删除主要发生在表的首尾两端,则宜采用尾指针表示的单循环链表。
第二章 线性表习题及答案
-------------------------------------------------------------------------------- 一、基础知识题
(答案及点评) 2.1 试描述头指针、头结点、开始结点的区别、并说明头指针和头结点的作用。 一、基础知识题 2.1 答:
开始结点是指链表中的第一个结点,也就是没有直接前趋的那个结点。
链表的头指针是一指向链表开始结点的指针(没有头结点时),单链表由头指针唯一确定,因此单链表可以用头指针的名字来命名。
头结点是我们人为地在链表的开始结点之前附加的一个结点。有了头结点之后,头指针指向头结点,不论链表否为空,头指针总是非空。而且头指针的设置使得对链表的第一个位置上的操作与在表其他位置上的操作一致(都是在某一结点之后)。
--------------------------------------------------------------------------------
(答案及点评) 2.2 何时选用顺序表、何时选用链表作为线性表的存储结构为宜?
2.2 答:
在实际应用中,应根据具体问题的要求和性质来选择顺序表或链表作为线性表的存储结构,通常有以下几方面的考虑:
1.基于空间的考虑。当要求存储的线性表长度变化不大,易于事先确定其大小时,为了节约存储空间,宜采用顺序表;反之,当线性表长度变化大,难以估计其存储规模时,采用动态链表作为存储结构为好。
2.基于时间的考虑。若线性表的操作主要是进行查找,很少做插入和删除操作时,采用顺序表做存储结构为宜;反之, 若需要对线性表进行频繁地插入或删除等的操作时,宜采用链表做存储结构。并且,若链表的插入和删除主要发生在表的首尾两端,则采用尾指针表示的单循环链表为宜。
--------------------------------------------------------------------------------
(答案及点评) 2.3 在顺序表中插入和删除一个结点需平均移动多少个结点?具体的移动次数取决于哪两个因素? 2.3.答:
在等概率情况下,顺序表中插入一个结点需平均移动n/2个结点。删除一个结点需平均移动(n-1)/2个结点。具体的移动次数取决于顺序表的长度n以及需插入或删除的位置i。i越接近n则所需移动的结点数越少。
--------------------------------------------------------------------------------
(答案及点评) 2.4 为什么在单循环链表中设置尾指针比设置头指针更好?
2.4. 答:
尾指针是指向终端结点的指针,用它来表示单循环链表可以使得查找链表的开始结点和终端结点都很方便,设一带头结点的单循环链表,其尾指针为rear,则开始结点和终端结点的位置分别是rear->next->next 和 rear, 查找时间都是O(1)。 若用头指针来表示该链表,则查找终端结点的时间为O(n)。
--------------------------------------------------------------------------------
(答案及点评) 2.5 在单链表、双链表和单循环链表中,若仅知道指针p指向某结点,不知道头指针,能否将结点*p从相应的链表中删去?若可以,其时间复杂度各为多少?
2.5 答:
我们分别讨论三种链表的情况。
1. 单链表。当我们知道指针p指向某结点时,能够根据该指针找到其直接后继,但是由于不知道其头指针,所以无法访问到p指针指向的结点的直接前趋。因此无法删去该结点。 2. 双链表。由于这样的链表提供双向链接,因此根据已知结点可以查找到其直接前趋和直接后继,从而可以删除该结点。其时间复杂度为O(1)。
3. 单循环链表。根据已知结点位置,我们可以直接得到其后相邻的结点位置(直接后继),又因为是循环链表,所以我们可以通过查找,得到p结点的直接前趋。因此可以删去p所指结点。其时间复杂度应为O(n)。
-------------------------------------------------------------------------------- (答案及点评) 2.6 下述算法的功能是什么?
LinkList Demo(LinkList L){ // L 是无头结点单链表 ListNode *Q,*P; if(L&&L->next){
Q=L;L=L->next;P=L;
while (P->next) P=P->next; P->next=Q; Q->next=NULL; }
return L;
}// Demo
第三章:栈和队列(包括习题与答案及要点)
转摘www.Ezikao.com
--------------------------------------------------------------------------------
本章介绍的是栈和队列的逻辑结构定义及在两种存储结构(顺序存储结构和链式存储结构)上如何实现栈和队列的基本运算。本章的重点是掌握栈和队列在两种存储结构上实现的基本运算,难点是循环队列中对边界条件的处理。
--------------------------------------------------------------------------------