2019年全国各地中考数学试题分类汇编 矩形菱形与正方形1(精准解析)

【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.

【解答】解:∵四边形ABCD是菱形, ∴AB=BC=CD=AD,BO=DO, ∵点E是BC的中点, ∴OE是△BCD的中位线, ∴CD=2OE=2×3=6,

∴菱形ABCD的周长=4×6=24; 故答案为:24.

【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.

10. (2019?湖北十堰?3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,

DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .

【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出

BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.

【解答】解:作DH⊥AE于H,如图,

∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上, ∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF, 在Rt△ABF中,BF=

=3,

∵∠EAF=90°, ∴∠BAF+∠BAH=90°, ∵∠DAH+∠BAH=90°, ∴∠DAH=∠BAF, 在△ADH和△ABF中

∴△ADH≌△ABF(AAS), ∴DH=BF=3,

∴S△ADE=AE?DH=×3×4=6. 故答案为6.

【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.

11. (2019?湖北天门?3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为 14.4 m.

【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠

CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,

在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案. 【解答】解:作DE⊥AB于E,如图所示:

则∠AED=90°,四边形BCDE是矩形, ∴BE=CD=9.6m,∠CDE=∠DEA=90°, ∴∠ADC=90°+30°=120°, ∵∠ACB=60°, ∴∠ACD=30°, ∴∠CAD=30°=∠ACD, ∴AD=CD=9.6m,

在Rt△ADE中,∠ADE=30°, ∴AE=AD=4.8m,

∴AB=AE+BE=4.8m+9.6m=14.4m; 故答案为:14.4.

【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.

12. (2019?湖北天门?3分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=

x+上,) .

且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是 (97,32

【分析】根据菱形的边长求得A1.A2.A3…的坐标然后分别表示出C1.C2.C3…的坐标找出规律

进而求得C6的坐标. 【解答】解:∵OA1=1, ∴OC1=1,

∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°, ∴C1的纵坐标为:sin60°?OC1=∴C1(,

),

,横坐标为cos60°?OC1=,

∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形, ∴A1C2=2,A2C3=4,A3C4=8,…, ∴C2的纵坐标为:sin60°?A1C2=∴C2(,2,

),

,代入y=,代入y=

x+求得横坐标为2,

C3的纵坐标为:sin60°?A2C3=4

∴C3(11,4∴C4(23,8

), ), ), );

).

x+求得横坐标为11,

C5(47,16

∴C6(97,32

故答案为(97,32

【点评】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.

13. (2019?广东深圳?3分)如图在正方形ABCD中,BE=1,将BC沿CE翻折,使点B对应点刚好落在对角线AC上,将AD沿AF翻折,使点D对应点落在对角线AC上,求EF= .

【答案】6 【解析】

联系客服:779662525#qq.com(#替换为@)