¼ÆÁ¿¾­¼ÃѧÖм¶½Ì³ÌϰÌâ²Î¿¼´ð°¸

R-squared 0.998746 Mean dependent var 16372.43 Adjusted R-squared 0.998566 S.D. dependent var 13734.44 S.E. of regression 520.0252 Sum squared resid 3785967. Durbin-Watson stat 1.137633 J-statistic 7.80E-27

´ÓÉÏÊö½á¹û£¬ÎÒÃÇÓУº

CZSR=--1080.3+0.037 GDP+0.890 TAX =0.9987 t (2.23) (10.45)

µÚÎåÕ ·ÇÏßÐԻعéÄ£ÐÍ

5.1 Èç¹ûÄ¿±êº¯Êý Ϊ͹º¯Êý£¬Ôò ÖÁ¶àÓÐÒ»¸ö¼«Ð¡µã£¬ÇÒ¾Ö²¿¼«Ð¡¼´ÊÇÕûÌå×îС£¬µü´ú»áÊÕÁ²µ½×îСֵ£¬µ«³õÖµµÄÑ¡Ôñ¶Ôµü´úËٶȵÄÓ°ÏìÏ൱´ó¡£Èç¹ûÄ¿±êº¯Êý ²»ÊÇ͹º¯Êýµ«ÓÐΨһ¼«Ð¡µã£¬µü´úÒ²»áÓв»´íµÄЧ¹û¡£µ«Èç¹ûÄ¿±êº¯Êý ÓжàÓÚÒ»¸öµÄ¼«Ð¡µã£¬µü´ú¿ÉÄÜÊÕÁ²µ½¾Ö²¿¼«Ð¡µã£¬²»Äܱ£Ö¤ÊÇÕûÌå×îСµã£¬Ôòµü´úÄÇô³õÖµµÄÑ¡Ôñ¾Í¸ü¼ÓÖØÒª¡£

5.2 Åжϵü´úÊÕÁ²²¢Ã»ÓÐÒ»Ö½ÓÊܵıê×¼£¬Í¨³£µÄ±ê×¼ÓУº £¨1£©Ä¿±êº¯ÊýµÄ¸Ä½øÐ¡ÓÚ¸ø¶¨µÄÕýÊý £¬¼´

£¨2£©²ÎÊýÖµµÄ±ä»¯Ð¡ÓÚ¸ø¶¨µÄÕýÊý £¬ £¨3£©ÌݶÈÏòÁ¿ÓëÁãµÄ¾àÀëСÓÚ¸ø¶¨µÄÕýÊý £¬

£¨4£©ÉÏÊöÈý¸öÊÕÁ²Ô­Ôò²»ÄÜÍêÈ«ÁîÈËÂúÒ⣬һ¸öÔ­ÒòÊÇËüÃǶ¼Óë²ÎÊýµÄÁ¿¼¶Óйء£Ò»¸öÓëÁ¿¼¶Î޹صÄÍ£Ö¹¹æÔòÊÇ

ÉÏʽµÄÓŵãÔÚÓÚ¸øÌݶȷÖÁ¿ÒÔ²»Í¬µÄÈ¨ÖØ£¬È¨ÖصĴóСÓë¶ÔÓ¦²ÎÊý¹À¼ÆµÄ¾«¶È³É·´±È¡£ÊÕÁ²±ê×¼ÖÐ ÊÇÒ»¸öºÜСµÄÕýÊý£¬ÓÉʹÓÃÕßÑ¡Ôñ¡£Ò»°ãµÄ ֵͨ³£ÔÚ µ½ Ö®¼ä¡£

5.3 Å£¶Ù-À­¸¥É­·¨ºÍÄâÅ£¶Ù·¨£¨°üÀ¨¸êµÂ·Æ¶ûµÂ-¿ïÌØ·½·¨¡¢´÷άɭ-¸¥À³³¹-±«Íþ¶û·¨Óë¸ß˹-Å£¶Ù·¨£©¡£

5.4 (1) ²ÉÓÃEViewsÈí¼þ£¬ÔÚÖ÷²Ëµ¥Ñ¡Quick ?Estimate Equation¡­£¬ÔÚ·½³ÌÉ趨¶Ô»°¿òÖÐÊäÈë·½³Ì£ºy=c(1)*k^c(2)*L^c(3)£¬²ÉÓÃLS¹À¼Æ·½·¨£¬¼´¿ÉµÃµ½Ä£ÐͲÎÊýµÄNLS¹À¼Æ¡£½á¹ûÈçÏ£º

Dependent Variable: Y Method: Least Squares Date: 01/29/09 Time: 23:33 Sample: 1 39 Included observations: 39 Estimation settings: tol= 1.0e-12, derivs=analytic

Initial Values: C(1)=0.00000, C(2)=0.00000, C(3)=0.00000 Convergence achieved after 54 iterations Y=C(1)*K^C(2)*L^C(3)

Coefficient Std. Error t-Statistic Prob. C(1) 7.632622 6.198935 1.231280 0.2262 C(2) 0.575950 0.073433 7.843225 0.0000 C(3) 0.366602 0.110376 3.321408 0.0021 R-squared 0.827574 Mean dependent var 8117.666 Adjusted R-squared 0.817995 S.D. dependent var 7986.997 S.E. of regression 3407.416 Akaike info criterion 19.17910 Sum squared resid 4.18E+08 Schwarz criterion 19.30707 Log likelihood -370.9924 Durbin-Watson stat 1.653097 (2)

µÃµ½ÉÏÊö½á¹ûÖ®ºó£¬´ò¿ªView?Coefficient Tests?Wald -Coefficient Restrictions£¬ÔÚ¶Ô»°¿ò¼üÈëc(2)+c(3)=1,µÃ

Wald Test: Equation: Untitled Test Statistic Value df Probability F-statistic 0.253435 (1, 36) 0.6177 Chi-square 0.253435 1 0.6147 Null Hypothesis Summary: Normalized Restriction (= 0) Value Std. Err. -1 + C(2) + C(3) -0.057447 0.114114 Restrictions are linear in coefficients.

ÏÔÈ»£¬²»ÄܾܾøÔ­¼ÙÉè¡£

5.5 ÔÚEViewsÖ÷²Ëµ¥ÖÐÑ¡Object ?New Object£¬ÔÚµ¯³öµÄ¶Ô»°¿òÖÐÊäÈë·½³Ì£º @logl logl1

param c(1) 100000 c(2) 0 c(3) 0 c(4) 0 res = y-c(1)/(1+exp(c(2)+c(3)*t)) var = @sum(res^2)/40

logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2 µã»÷¹¦ÄܼüEstimate£¬µÃµ½ÈçϽá¹û

LogL: UNTITLED Method: Maximum Likelihood (Marquardt) Date: 01/28/09 Time: 17:42 Sample: 1961 2000 Included observations: 40 Evaluation order: By observation Estimation settings: tol= 1.0e-12, derivs=accurate numeric Initial Values: C(1)=100000., C(2)=0.00000, C(3)=0.00000 Failure to improve Likelihood after 166 iterations Coefficient Std. Error z-Statistic Prob. C(1) 154463.0 4136.160 37.34455 0.0000 C(2) 0.332195 0.037541 8.848753 0.0000 C(3) -0.046025 0.002111 -21.79767 0.0000 Log likelihood -325.7053 Akaike info criterion 16.43526 Avg. log likelihood -8.142632 Schwarz criterion 16.56193 Number of Coefs. 3 Hannan-Quinn criter. 16.48106

5.6 ÂÔ

µÚÁùÕ ·Ö²¼ÖͺóÄ£ÐͺÍ×ԻعéÄ£ÐÍ

6.1£¨1£©´í¡£Ê¹ÓÃºá½ØÃæÊý¾ÝµÄÄ£Ð;Ͳ»ÊǶ¯Ì¬Ä£ÐÍ¡£ £¨2£©¶Ô¡£

£¨3£©´í¡£¹À¼ÆÁ¿¼È²»ÊÇÎÞÆ«µÄ£¬ÓÖ²»ÊÇÒ»Öµġ£ £¨4£©¶Ô¡£

£¨5£©´í¡£½«²úÉúÒ»Ö¹À¼ÆÁ¿£¬µ«ÊÇÔÚСÑù±¾Çé¿öÏ£¬µÃµ½µÄ¹À¼ÆÁ¿ÊÇÓÐÆ«µÄ¡£ £¨6£©¶Ô¡£

6.2 ¶ÔÓÚ¿Æ¿ËÄ£ÐͺÍÊÊÓ¦Ô¤ÆÚÄ£ÐÍ£¬Ó¦ÓÃOLS·¨²»½öµÃ²»µ½ÎÞÆ«¹À¼ÆÁ¿£¬¶øÇÒÒ²µÃ²»µ½Ò»Ö¹À¼ÆÁ¿¡£

µ«ÊÇ£¬²¿·Öµ÷ÕûÄ£ÐͲ»Í¬£¬ÓÃOLS·¨Ö±½Ó¹À¼Æ²¿·Öµ÷ÕûÄ£ÐÍ£¬½«²úÉúÒ»Ö¹À¼ÆÖµ£¬ËäÈ»¹À¼ÆÖµÍ¨³£ÊÇÓÐÆ«µÄ£¨ÔÚСÑù±¾Çé¿öÏ£©¡£

6.3 ¿Æ¿Ë·½·¨¼òµ¥µØ¼Ù¶¨½âÊͱäÁ¿µÄ¸÷ÖͺóÖµµÄϵÊý£¨ÓÐʱ³ÆÎªÈ¨Êý£©°´¼¸ºÎ¼¶ÊýµÝ¼õ£¬¼´£º Yt =¦Á+¦ÂXt +¦Â¦ËXt-1 +¦Â¦Ë2Xt-2 +¡­+ ut ÆäÖÐ 0<¦Ë<1¡£

Õâʵ¼ÊÉÏÊǼÙÉèÎÞÏÞÖͺó·Ö²¼£¬ÓÉÓÚ0<¦Ë<1£¬ XµÄÖð´ÎÖͺóÖµ¶ÔYµÄÓ°ÏìÊÇÖ𽥵ݼõµÄ¡£ ¶ø°¢¶ûÃÉ·½·¨µÄ»ù±¾¼ÙÉèÊÇ£¬Èç¹ûYÒÀÀµÓÚXµÄÏÖÆÚÖµºÍÈô¸ÉÆÚÖͺóÖµ£¬ÔòȨÊýÓÉÒ»¸ö¶àÏîʽ·Ö²¼¸ø³ö¡£ÓÉÓÚÕâ¸öÔ­Òò£¬°¢¶ûÃÉÖͺóÒ²³ÆÎª¶àÏîʽ·Ö²¼Öͺ󡣼´ÔÚ·Ö²¼ÖͺóÄ£ÐÍ

ÖУ¬¼Ù¶¨£º

ÆäÖÐpΪ¶àÏîʽµÄ½×Êý¡£Ò²¾ÍÊÇÓÃÒ»¸öp½×¶àÏîʽÀ´ÄâºÏ·Ö²¼Öͺ󣬸öàÏîʽÇúÏßͨ¹ýÖͺó·Ö²¼µÄËùÓе㡣

6.4 £¨1£©¹À¼ÆµÄYÖµÊÇ·ÇËæ»ú±äÁ¿X1ºÍX2µÄÏßÐÔº¯Êý£¬ÓëÈŶ¯ÏîvÎ޹ء£ £¨2£©ÓëÀûά¶Ù·½·¨Ïà±È£¬±¾·½·¨Ôì³É¶àÖØ¹²ÏßÐԵķçÏÕҪСһЩ¡£ 6.5£¨1£©

£¨2£© µÚ£¨1£©ÎÊÖеõ½µÄÄ£Ð͸߶ȲÎÊý·ÇÏßÐÔ£¬ËüµÄ²ÎÊýÐè²ÉÓ÷ÇÏßÐԻع鼼ÊõÀ´¹À¼Æ¡£ 6.6

Òò´Ë£¬±ä»»Ä£ÐÍΪ£º

ÓôËʽ¿É¹À¼Æ³ö ºÍ £¬¼´¿ÉµÃµ½ £¬È»ºó¿ÉµÃµ½ÖîbµÄ¹À¼ÆÖµ¡£

6.7 £¨1£©É豸ÀûÓöÔͨ»õÅòÕÍµÄ¶ÌÆÚÓ°ÏìÊÇXtµÄϵÊý£º0.141£»´Ó³¤ÆÚ¿´£¬ÔÚºöÂÔÈŶ¯ÏîµÄÇé¿öÏ£¬Èç¹ûYtÇ÷ÏòÓÚijһ¾ùºâˮƽ ,ÔòXtºÍXt-1Ò²½«Ç÷ÏòÓÚijһ¾ùºâˮƽ £º

ËùÒÔ£¬É豸ÀûÓöÔͨ»õÅòÕ͵ij¤ÆÚÓ°ÏìÊÇXtºÍXt£­1µÄϵÊýÖ®ºÍ£º0.377¡£ £¨2£©¶ÔÄ£Ð͵Ļعé²ÎÊýµÄÏÔÖøÐÔ¼ìÑ飺

Ô­¼ÙÉ裺H0: ¦Â1 =0 ±¸Ôñ¼ÙÉ裺H1: ¦Â1 10 ´Ó»Ø¹é½á¹û¿ÉÖª£¬¼ìÑéͳ¼ÆÁ¿ 2.60

¸ù¾Ýn-k-1=15,a=5%,²éÁÙ½çÖµ±íµÃtc£½2.131¡£ ÓÉÓÚt£½2.60> tc£½2.131

¹Ê¾Ü¾øÔ­¼ÙÉ裬¼´Xt¶ÔyÓÐÏÔÖøÓ°Ïì¡£

Ô­¼ÙÉ裺H0: ¦Â2 =0 ±¸Ôñ¼ÙÉ裺H1: ¦Â2 10 ´Ó»Ø¹é½á¹û¿ÉÖª£¬¼ìÑéͳ¼ÆÁ¿ 4.26

¸ù¾Ýn-k-1=15,a=5%,²éÁÙ½çÖµ±íµÃtc£½2.131¡£ ÓÉÓÚt£½4.26> tc£½2.131

¹Ê¾Ü¾øÔ­¼ÙÉ裬¼´Xt£­1¶ÔyÓÐÏÔÖøÓ°Ïì¡£

×ÛÉÏËùÊö£¬ËùÓеÄбÂÊϵÊý¾ùÏÔÖøÒìÓÚ0£¬¼´É豸ÀûÓúÍÖͺóÒ»ÆÚµÄÉ豸ÀûÓöÔͨ»õÅòÕͶ¼ÓÐÏÔÖøµÄÓ°Ïì¡£

£¨3£©¶Ô´Ë»Ø¹é·½³Ì¶øÑÔ£¬¼ìÑéÁ½¸öбÂÊϵÊýΪÁ㣬µÈÓÚ¼ìÑ黨¹é·½³ÌµÄÏÔÖøÐÔ£¬¿ÉÓÃF¼ìÑé¡£

Ô­¼ÙÉ裺H0: ¦Â1 =¦Â2 =0 ±¸Ôñ¼ÙÉ裺H1:Ô­¼ÙÉè²»³ÉÁ¢

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)