2020届中考模拟达州市中考数学模拟试卷(含参考答案)

.

P1P2=x=

,y=

他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为

②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标: (﹣3,3)或(7,1)或(﹣1,﹣3) ;

拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;

(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;

(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值. 【解答】解:

(1)∵P1(x1,y1),P2(x2,y2), ∴Q1Q2=OQ2﹣OQ1=x2﹣x1, ∴Q1Q=

=

∴OQ=OQ1+Q1Q=x1+

∵PQ为梯形P1Q1Q2P2的中位线,

.

.

∴PQ==,

,y=

即线段P1P2的中点P(x,y)P的坐标公式为x=(2)①∵M(2,﹣1),N(﹣3,5), ∴MN=故答案为:

=

②∵A(2,2),B(﹣2,0),C(3,﹣1),

∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1), 设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3, ∴此时D点坐标为(﹣3,3),

当AC为对角线时,同理可求得D点坐标为(7,1), 当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3), 综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3), 故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);

(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,

又对称性可知EP=EM,FP=FN, ∴PE+PF+EF=ME+EF+NF=MN,

∴此时△PEF的周长即为MN的长,为最小, 设R(x, x),由题意可知OR=OS=2,PR=PS=n, ∴

=2,解得x=﹣(舍去)或x=,

∴R(,), ∴

∴P(2,1),

.

=n,解得n=1,

.

∴N(2,﹣1), 设M(x,y),则∴M(,∴MN=

即△PEF的周长的最小值为

),

=

, .

=,

=,解得x=,y=

【点评】本题为一次函数的综合应用,涉及中位线定理、中点坐标公式、两点间距离公式、轴对称的性质、角平分线的性质、平行四边形的性质等知识.在(1)中求得OQ和PQ的长是解题的关键,在(2)中注意中点坐标公式的应用,在(3)中确定出E、F的位置,求得P点的坐标是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.

25.(12分)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.

(1)①直接回答:△OBC与△ABD全等吗?

②试说明:无论点C如何移动,AD始终与OB平行;

(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;

(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值. 【分析】(1)①利用等边三角形的性质证明△OBC≌△ABD; ②证明∠OBA=∠BAD=60°,可得OB∥AD;

(2)首先证明DE⊥BC,再求直线AE与抛物线的交点就是点P,所以分别求直线AE和抛物线y1的解析式组成方程组,求解即可;

.

x+m

.

(3)先画出如图3,根据图形画出直线与图形M有个公共点时,两个边界的直线,上方到y=将y=

x,

x向下平移即可满足l与图形M有3个公共点,一直到直线l与y2相切为止,主要计

算相切时,列方程组,确定△≥0时,m的值即可. 【解答】解:(1)①△OBC与△ABD全等, 理由是:如图1,∵△OAB和△BCD是等边三角形, ∴∠OBA=∠CBD=60°, OB=AB,BC=BD,

∴∠OBA+∠ABC=∠CBD+∠ABC, 即∠OBC=∠ABD,

∴△OBC≌△ABD(SAS); ②∵△OBC≌△ABD, ∴∠BAD=∠BOC=60°, ∴∠OBA=∠BAD, ∴OB∥AD,

∴无论点C如何移动,AD始终与OB平行;

(2)如图2,∵AC2=AEAD, ∴

∵∠EAC=∠DAC, ∴△AEC∽△ACD, ∴∠ECA=∠ADC, ∵∠BAD=∠BAO=60°, ∴∠DAC=60°, ∵∠BED=∠AEC, ∴∠ACB=∠ADB, ∴∠ADB=∠ADC, ∵BD=CD, ∴DE⊥BC,

Rt△ABE中,∠BAE=60°, ∴∠ABE=30°,

.

联系客服:779662525#qq.com(#替换为@)