2019年山东省潍坊市中考数学试卷(含答案解析)

19.(5分)已知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.

【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可. 【解答】解:

①﹣②得:x﹣y=5﹣k, ∵x>y, ∴x﹣y>0. ∴5﹣k>0. 解得:k<5.

【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.

20.(6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:

;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造

为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)

【分析】根据题意和锐角三角函数可以求得AE的长,进而得到CE的长,再根据锐角三角函数可以得到ED的长,最后用勾股定理即可求得CD的长. 【解答】解:∵∠AEB=90°,AB=200,坡度为1:∴tan∠ABE=∴∠ABE=30°, ∴AE=AB=100, ∵AC=20, ∴CE=80,

∵∠CED=90°,斜坡CD的坡度为1:4, ∴

第21页(共29页)

即,

解得,ED=320, ∴CD=

答:斜坡CD的长是

米, 米.

【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.

21.(9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:

次数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 数字

3

5

2

3

3

4

3

5

(1)求前8次的指针所指数字的平均数.

(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)

【分析】(1)根据平均数的定义求解可得;

(2)由这10次的指针所指数字的平均数不小于3.3,且不大于3.5知后两次指正所指数字和要满足不小于5且不大于7,再画树状图求解可得.

【解答】解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5; (2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5, ∴后两次指正所指数字和要满足不小于5且不大于7, 画树状图如下:

第22页(共29页)

由树状图知共有16种等可能结果,其中符合条件的有9种结果, 所以此结果的概率为

【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.

22.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M. (1)求证:△AHF为等腰直角三角形. (2)若AB=3,EC=5,求EM的长.

【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论;

(2)由题意可得DE=2,由平行线分线段成比例可得

,即可求EM的长.

【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形 ∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90° ∵AD∥BC,AH∥DG ∴四边形AHGD是平行四边形 ∴AH=DG,AD=HG=CD

∵CD=HG,∠ECG=∠CGF=90°,FG=CG ∴△DCG≌△HGF(SAS) ∴DG=HF,∠HFG=∠HGD ∴AH=HF,

∵∠HGD+∠DGF=90° ∴∠HFG+∠DGF=90° ∴DG⊥HF,且AH∥DG

第23页(共29页)

∴AH⊥HF,且AH=HF ∴△AHF为等腰直角三角形. (2)∵AB=3,EC=5, ∴AD=CD=3,DE=2,EF=5 ∵AD∥EF ∴

,且DE=2

∴EM=

【点评】本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,灵活运用这些知识进行推理是本题的关键. 23.(10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.

(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?

(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)

【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为10(1+20%)=12万元,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元,可列出方程:

,求得x即可

(2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值. 【解答】解:

(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元

今年的批发销售总额为10(1+20%)=12万元 ∴

第24页(共29页)

联系客服:779662525#qq.com(#替换为@)