× 3 2 1 0 -1 -2 -3 3 9 6 3 2 6 2 2 1 3 2 1 0 0 -1 -3 -2 -3 6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的
百分率可记为,你认为哪家商店该彩电的降价的百分率大?为什么?
(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?
1.4.1 有理数的乘法(3)
授课时间:
【教学目标】
1.熟练有理数乘法法则;
2.探索运用乘法运算律简化运算. 【对话探索设计】 〖探索1〗
你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?
〖阅读理解〗
乘法交换律和结合律(见P40) 〖探索2〗
下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?
(1)25×2004×4; (2) -.
〖探索3〗
运用运算律真的能节省时间吗?分两个大组,比一比:
计算
×(-198)×(
).
〖练习1〗
运用乘法交换律和结合律简化运算:
(1)1999×125×8; (2) -1097××(
).
〖探索4〗
1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?
2.如右图,你会用两种方法求长方形的面积吗?
〖例题学习〗
P41.例5 〖作业〗
P41.练习 〖补充作业〗
1.计算(注意运用分配律简化运算):
(1)-6×(100-); (2)
×(-12).
(2)2×(-3)×4×(-5)×(-6)×7×8×9×(-10); (3) 2×(-3)×4×(-5)×(-6)×0×7×8×9×(-10);
4.下列各式的积(幂)是正的还是负的?为什么? (1)(-3)×(-3)×(-3)×(-3)×(-3)
.
5.运用乘法交换律和结合律简化运算: (1)-98××(-0.6); (2)-1999××(-)××(
)
【补充练习】
1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?
2.运用分配律化简下列的式子:
(1)例39 (2)13205x; =(3+9+1)x =13x;
(3)12π-18π-9π; (4)78z.
第二章 一元一次方程
一、背景与意义分析
本课安排在第1章“有理数”之后,属于《全日制义务教育数学课程标准(实验稿)中的“数与代数”领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对“根据实际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的“数学建模思想”是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
二、学习与导学目标
1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。利用率100%。
3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。
4、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到“从算式到方程是数学的进步”的含义。
5、观念确认与引导:通过经历“方程”这一数学概念的形成与应用过程,感受到“问题情境——分析讨论——建立模型——解释应用——转换拓展”的模式,从而更好地理解“方程”的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。
三、障碍与生成关注 通过“问题情境”,建立“数学模型”,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝“数学模型”方面理解。
四、学程与导程活动