材料基础重点与习题答案

11.设有1000g含1%C的奥氏体从1200℃缓慢冷至室温,试求:(1)Fe3C开始形成的温度;(2)Fe3C完全形成的温度;(3)最后转变的奥氏体成分;(4)在726℃时两相的重量;(5)室温时珠光体与二次Fe3C的重量。

12. 结合Fe-Fe3C相图描述5%C的铁碳合金平衡冷却至室温的过程,并计算其室温组织中一次渗碳体、共晶渗碳体、二次渗碳体、共析渗碳体、三次渗碳体的重量分数。

第一、二章 例题

例1. 氧化镁(MgO)与氯化钠(NaCl)具有相同的结构。已知Mg的离子半径为0.066nm,氧的离子半径为0.140nm。(1)试求氧化镁的晶格常数。(2)试求氧化镁的密度。

解答:氧化镁为离子化合物,计算时必须使用离子半径而不能使用原子半径 (1) 氯化钠(NaCl)晶体的结构如图2.52(P53)

?1?2a?2(?Mg??0)?2(0.066?0.140)?0.412nm

(2) 氧化镁(MgO)与氯化钠(NaCl)具有相同的结构。每一晶胞中含有4个Mg2+及4个O2-;1mol的Mg2+具有24.31g的质量,1mol的O2-具有16.00g的质量,则密度为

?24.31?16.00?4?23?4(24.31?16.00)?6.02?10??3 ?? ?3.83g/cm3?7323a(10?0.412)?6.02?10例2. 某一原子的配位数(CN)为此原子之邻接原子的数目。以共价键结合的原子其最大

的配位数是由其原子所具有的价电子数来决定;而离子键结合的原子其最大的配位数是受其离子半径比所限制。试证明当配位数为6时,其最小半径比为0.41。

解答:当配位数为6时,其可能的最小 半径值如图(a),第五和第六个离子正好位 于中心原子的正上方和正下方如图(b);一

2+2-个Mg最多被六个O包围。

由图(a) 2(r+R)2 =(2R)2

(r+R)2 =2R2 ???(2?1)R

?r/R?0.41

CN=6时的r和R 之比为0.41。

例3. 假设在高压时可将NaCl强迫变成CsCl,试问体积改变的百分比是多少?(已知CN=6时,Na的离子半径为0.097nm,氯的离子半径为0.181nm)

解答: NaCl和CsCl晶体的结构如图2.51、2.52(P53) CN=6时,NaCl点阵常数

????Cl)?2?(0.097?0.181)?0.556nm a?2(?Na a3=0.172nm3,其中含有4个NaCl。

CN=8时,由Ahrens的模型得到不同配位数时离子半径之间的关系式如下:

?? 此时,?Na0.97?CN?8??CN?6?1.1?CN?4

0.0970.181?0.10nm,rCl???0.187nm 0.970.979

3a?2(?Na???Cl?)?a?23(0.10?0.187)?0.331nm 3 a3=0.036nm3,其中仅有1个NaCl,

?V0.036nm3?4?0.172nm3???16% (收缩) 故3V0.172nm

例4. 已知Cu的原子直径为2.56A,求Cu的晶格常数,并计算1mm3Cu的原子数。 解答:D(γ)为Cu的原子直(半)径,n为1mm3Cu的原子数, 晶胞体积a3,致密度为0.74。

?2. ??a ? a?22??2D?2?2.56?3.62?Cu.fcc4???n?4V??(2D)3. ? ??19?0.74?n?8.43?10个?n? ?3?4D????????3?2????

例5. 已知Al相对原子质量Ar(Al)=26.97,原子半径γ=0.143nm,求Al晶体的密度。

?Al

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟偡濠婂啰绠绘鐐村灴婵偓闁靛牆鎳愰濠傗攽鎺抽崐鎰板磻閹惧墎妫柟顖嗗瞼鍚嬮梺鍝勭焿缂嶄線鐛崶顒夋晬闁挎繂妫岄幐鍛節閻㈤潧浠滄俊顖氾攻缁傚秴饪伴崼婵堫槰闂侀€炲苯澧い顏勫暣婵″爼宕卞Δ鈧〖缂傚倸鍊哥粔鏉懳涘Δ鈧悳濠氬锤濡や礁浜滈梺绋跨箰閻ㄧ兘骞忛搹鍦<缂備降鍨归獮鏍煙閸愯尙绠洪柕鍥ㄥ姌椤﹀绱掓潏銊ユ诞闁诡喒鏅犲畷姗€鎳犻鎸庡亝缂傚倸鍊风欢锟犲窗閺嶎厽鍋嬮柟鎯х-閺嗭箓鏌熼悜姗嗘畷闁稿﹦鍏橀幃妤呮偨閻ц婀遍弫顕€骞嗚閺€浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欑喊鍗炴闂佺懓绠嶉崹纭呯亽婵炴挻鍑归崹鎶藉焵椤掑啫鐓愰柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺闁告繂瀚悞璺ㄧ磼閺屻儳鐣烘鐐叉瀵噣宕奸锝嗘珫婵犵數鍋為崹鍫曟晝閳哄倸顕遍柨鐕傛嫹<<
12@gma联系客服:779662525#qq.com(#替换为@)