¸ÅÂÊÂÛÓëÊýÀíͳ¼ÆÏ°Ìâ´ð°¸£¨ÁÎïи´µ©°æ£©

1.ÉèËæ»ú±äÁ¿XÔÚ1£¬2£¬3£¬4ËĸöÕûÊýÖеȿÉÄܵØÈ¡Öµ£¬ÁíÒ»¸öËæ»ú±äÁ¿YÔÚ1~XÖеȿÉÄܵØÈ¡Ò»ÕûÊýÖµ£¬ÊÔÇó£¨X£¬Y£©µÄ·Ö²¼ÂÉ.

½â Óɳ˷¨¹«Ê½ÈÝÒ×ÇóµÃ£¨X£¬Y£©µÄ·Ö²¼ÂÉ£¬Ò×Öª{X=i£¬Y=j}µÄÈ¡ÖµÇé¿öÊÇ£ºi=1£¬2£¬3£¬4£¬jÈ¡²»´óÓÚiµÄÕýÕûÊý£¬ÇÒ

P{X=i£¬Y=j}=P{Y=j£üX=i}P{X=i}=¡¤

ÓÚÊÇ£¨X£¬Y£©µÄ·Ö²¼ÂÉΪ

±í3?3

X Y 1 2 3 4 1/4 1/8 1/12 1/16 0 1/8 1/12 1/16 0 0 1/12 1/16 0 0 0 1/16 1 2 3 4 1i1£¬i=1£¬2£¬3£¬4£¬j¡Üi. 4?Ae?(3x?4y),x?0,y?02.ÉèÁ¬ÐøÐÍËæ»ú±äÁ¿£¨X£¬Y£©µÄÃܶȺ¯ÊýΪf(x,y)=?,

ÆäËû0,?Çó £¨1£©ÏµÊýA£»£¨2£©ÂäÔÚÇøÓòD£º{0?x?1,0?y?2}µÄ¸ÅÂÊ¡£

½â£º(1) 12; (2) (1-e-3)(1-e-8)

3.ÉèËæ»ú±äÁ¿£¨X£¬Y£©µÄ¸ÅÂÊÃܶÈΪ

f£¨x£¬y£©=?£¨1£© È·¶¨³£Êýk£»

£¨2£© ÇóP{X£¼1£¬Y£¼3}£» £¨3£© ÇóP{X£¼1.5}£» £¨4£© ÇóP{X+Y¡Ü4}. ¡¾½â¡¿£¨1£© ÓÉÐÔÖÊÓÐ

?k(6?x?y),0?x?2,2?y?4,

ÆäËû.?0,??????????f(x,y)dxdy??

20?42k(6?x?y)dydx?8k?1,

¹Ê R?18£¨2£© P{X?1,Y?3}? ?(3) P{X?1.5}???1313????f(x,y)dydx

x?1.5???13k(6?x?y)dydx? ?0?288f(x,y)dxdyÈçͼa??f(x,y)dxdy

D1 ?1.50dx?(4) P{X?Y?4}?X?Y?4??127(6?x?y)dy?. 2832f(x,y)dxdyÈçͼb??f(x,y)dxdy

4D2 13

??20dx?4?x212(6?x?y)dy?. 83

Ìâ5ͼ

4.Éè(?,?)µÄÁªºÏÃܶȺ¯ÊýΪ

?1?,f(x,y)??2??0?x?1,0?y?20,

Çó£¨1£©?Óë?ÖÐÖÁÉÙÓÐÒ»¸öСÓÚ1/2µÄ¸ÅÂÊ£»£¨2£©???´óÓÚ1µÄ¸ÅÂÊ.

5. Éè¶þάÁ¬ÐøÐÍËæ»ú±äÁ¿(X,Y)µÄÁªºÏ·Ö²¼º¯ÊýΪ

xyF(x,y)?A(B?arctan)(C?arctan)

23Çó£¨1£©A ¡¢B¡¢CµÄÖµ£¬ £¨2£©(X,Y)µÄÁªºÏÃܶȣ¬ £¨3£© ÅжÏX¡¢YµÄ¶ÀÁ¢ÐÔ¡£

61??½â£º£¨1£© A?2,B?,C? £»£¨2£© f(x,y)?2£»£¨3£© ¶ÀÁ¢ £» 22?(4?x)(9?y)?22

6. Éè(X,Y)µÄÁªºÏÃܶÈΪf(x,y)?Ay(1?x),0?x?1,0?y?x£¬

£¨1£©ÇóϵÊýA£¬

£¨2£©Çó(X,Y)µÄÁªºÏ·Ö²¼º¯Êý¡£

£¨3£©Çó¹ØÓÚX¼°YµÄ±ßÔµÃܶȡ£ £¨4£©XÓëYÊÇ·ñÏ໥¶ÀÁ¢£¿ £¨5£©Çóf(yx)ºÍf(xy)¡£ ½â£º£¨1£©A?24

0??3y4?8y3?12(x?x2/2)y2??£¨2£©F(x,y)??3y4?8y3?6y2?4x3?3x4?1??x?0»òy?00?x?10?y?xx?10?y?1 0?x?1x?yx?1y?1?12x2(1?x),0?x?1?12y(?1y2),?0y?1 £¨3£©fx(x)?? £» fy(y)??

0,ÆäËû0,ÆäËû??£¨4£©²»¶ÀÁ¢

?2y?,0?y?x,0?x?1£¨5£©fYX(yx)??x2 £»

?ÆäËû?0,

14

?x)?2(1,y?x?1,0?y?1?2 fXY(xy)??(1?y)

?0,ÆäËû?7.ÉèËæ»ú±äÁ¿X~U(0,1)£¬µ±¹Û²ìµ½X=x£¨0£¼x£¼1£©Ê±£¬Y~U(x,1)£¬ÇóYµÄ¸ÅÂÊÃܶÈfY£¨y£©.

½â °´ÌâÒ⣬X¾ßÓиÅÂÊÃܶÈ

fX£¨x£©=??1,0?x?1

?0,ÆäËû.ÀàËƵأ¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÖµx£¨0£¼x£¼1£©£¬ÔÚX=xµÄÌõ¼þÏ£¬YµÄÌõ¼þ¸ÅÂÊÃܶÈ

?1?,x?y?1,fY£üX£¨y£üx£©=?1?x

?ÆäËû.?0,Òò´Ë£¬XºÍYµÄÁªºÏ¸ÅÂÊÃܶÈΪ

?1?,0?x?y?1,f£¨x£¬y£©=fY£üX£¨y£üx£©fX£¨x£©=?1?x

?ÆäËû.?0,ÓÚÊÇ£¬µÃ¹ØÓÚYµÄ±ßÔµ¸ÅÂÊÃܶÈΪ

fY£¨y£©=

??????y1?dx??ln(1?y),0?y?1,f(x,y)dx???01?x

?0,ÆäËû.?8.ÉèXºÍYÊÇÁ½¸öÏ໥¶ÀÁ¢µÄËæ»ú±äÁ¿£¬XÔÚ£¨0£¬1£©ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬YµÄ¸ÅÂÊÃܶÈΪ

1??e?y/2,fY£¨y£©=?2??0,y?0,ÆäËû.

£¨1£©ÇóXºÍYµÄÁªºÏ¸ÅÂÊÃܶȣ»

£¨2£© É躬ÓÐaµÄ¶þ´Î·½³ÌΪa2+2Xa+Y=0£¬ÊÔÇóaÓÐʵ¸ùµÄ¸ÅÂÊ.

y?1?2?1,0?x?1,?e,y?1,¡¾½â¡¿£¨1£© ÒòfX(x)??? fY(y)???2

0,ÆäËû;??0,ÆäËû.??1?y/2?e¹Êf(x,y)X,Y¶ÀÁ¢fX(x)fY(y)??2??0,0?x?1,y?0,ÆäËû.

Ìâ14ͼ

15

(2) ·½³Ìa?2Xa?Y?0ÓÐʵ¸ùµÄÌõ¼þÊÇ

2??(2X)2?4Y?0

¹Ê X2¡ÝY£¬ ´Ó¶ø·½³ÌÓÐʵ¸ùµÄ¸ÅÂÊΪ£º

P{X2?Y}?x2?y??f(x,y)dxdy

1?y/2edy002 ?1?2?[?(1)??(0)]

?0.1445.??dx?1x2

Ï° Ìâ ËÄ

1.ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪ X Pk -2 -1 0 1 3 1/5 1/6 1/5 1/15 11/30 ÇóY=X2µÄ·Ö²¼ÂÉ.

½â Y¿ÉÈ¡µÄֵΪ0£¬1£¬4£¬9

P(Y?0)?P(X?0)?15117??61530

P(Y?1)?P(X??1)?P(X?1)?1P(Y?4)?P(X??2)?511P(Y?9)?P(X?3)?30¹ÊYµÄ·Ö²¼ÂÉΪ Y 0 1 4 9 Pk 1/5 7/30 1/5 11/30 2.Ö¤Ã÷Ìâ

ÉèËæ¼´±äÁ¿XµÄ²ÎÊýΪ2µÄÖ¸Êý·Ö²¼£¬Ö¤Ã÷Y?1?e²¼¡£

?2XÔÚÇø¼ä£¨0£¬1£©ÉÏ·þ´Ó¾ùÔÈ·Ö

16

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)