?3k?b?6?b?3解得?·········································· 9分 ∴?∴直线AC的方程为:y?x?3 ·
?3k?b?0k?1??将x??1代入y?x?3得y?2
2) ·∴Q点坐标为(?1,······························································································ 10分
?6),连接A?Q;A?Q与x轴交于点M即为所求的点 (3)作A关于x轴的对称点A?(3, ······························································································································ 11分 设直线A?Q方程为y?kx?b
?3k?b??6?b?0∴?解得?[来源:学科网]
?k?b?2k??2??···························································································· 12分 ∴直线A?C:y??2x ·
令x?0,则y?0 ··································································································· 13分
0) ································································································ 14分 ∴M点坐标为(0,
34、(2009年浙江省嘉兴市秀洲区素质评估卷10).如图,在平面直角坐标系内,四边形AOBC是菱形,点B的坐标是(4,0),?AOB?60?, 点P从点A开始沿AC以每秒1个单位长度向点C移动,同时点Q从点O以每秒a(1?a?3)个单位长度的速度沿OB向右移动,设t秒后 ,PQ交OC于点R。、
(1)设a?2,t为何值时,四边形APQO的面积是菱形AOBC面积的
1; 4(2)设a?2,OR?83,求t的值及此时经过P、Q两点的直线解析式; 5
(3)当a为何值时,以O、Q、P为顶点的三角形与以O、B、C为顶点的三角形相似(只写答案,不必说理)。
答案:(1)作AD⊥OB于D,在Rt△AOD中,OA=4,?AOD?60?, Sin60??
AD ,4AD?23∵S梯形APQO?S梯形APQO?11(AP?OQ)?AD?(t?at)?23,当a=2时,22S梯形APQO1?3t?23?33t,∴由211?S菱形AOBC??4?23?23, 442; 3∴33t?23?t?(2)作CH⊥x轴于H,在Rt⊿CBH中,BC=OB=4,∠CBH=∠AOB=60°,
∴Cos60°=
BH1CH3,∴BH=4?=2,Sin60°=,∴CH=4??23,在Rt⊿OCH中,由
2BCBC2OQOR?,另一方面,当PCRC勾股定理得,OC=43,∵AC∥OB,得⊿OQR∽⊿CPR,∴
852t83123?5,∴t=1,a=2时,OQ= at=2t,PC=4-t,RC=OC-OR=43?,∴?4?t123555解得P(3,33),Q(2,0),∴解析式为y?23x?43,(3)当a=1时,⊿ORQ∽⊿
OBC,理由如下:∵AC∥OB,得⊿OQR∽⊿CPR,得
OR43?OR?at,∴
6?(2?t)OR=
OROQOROQ43at??,∴当,∠ROQ=∠COB得⊿OQR∽⊿OBC,此时, 得OCOBOCOB4?t?at43at4?t?at?at,所以at-t=0,t(a-1)=0,∴t=0(舍去);a-1=0,∴a=1。
443
35、(2011年浙江省嘉兴市秀洲区素质评估卷9).在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度球门PQ的高度为2.44米.问: (1) 通过计算说明,球是否会进球门?
(2) 如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,
他能否在空中截住这次吊射?
(3) 如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,
进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10 t ,问这次射门守门员能否挡住球?
32米。如图a:以球门底部为坐标原点建立坐标系,3
答案:(1)解:设足球经过的路线所代表的函数解析式为y?a?x?14??232,??(23分)
把(30,0)代入得:a??11?x?14?2?32。??(2分) ,故y??24243当x?0时,y?2.5?2.44 所以球不会进球门。??(1分) (2)当x?2时,y?14?2.75??(2分) 3 所以守门员不能在空中截住这次吊射。??(1分) (3)连结BA并延长,交CD于点M,由题意M为CD中点,过A作
EF//CD。
由?BEA∽?BCM可得AE=3??(1分)
∴BE=109,t?31093109,S??3??(2分) 10010 答:这次射门守门员能挡住球。??(1分)