若用管的长度L与直径D表示上式,就可写成容易用实验测量的形式
?p?D4Q?128?L ,
?pD2u?32?L 。
上面的第一个式子就是著名的泊肃叶粘滞性方程,由海根和泊肃叶分别独立地用实验进行了验证。泊肃叶公式与柏努利方程最明显的差别在于前者考虑了流体的粘滞性,认为流体在水平管内连续流动时,必须在该流体两端存在压力差,而按照柏努利方程,流体在水平管内稳定流动时(Dh=0)没有压力差流体照样能连续流动,相比较之下泊肃叶公式更接近实际流体。
5)雷诺数
当流体作稳定层流时,流体内大多数分子的定向运动基本上是在某个薄层状的平面内,流动层与相邻流动层之间只有少量的分子交换。各流动层之间的纵向力是导致层流不稳定的根本因素,它会引起相邻流动层之间的分子进行动量交换。当纵向力大到一定的程度时,各流动层之间的分子发生激烈交换,完全破坏层流发展成一种无规则的流体运动??湍流。如何判定流体内部出现的是层流还是湍流呢?雷诺在18世纪提出了在什么情况下,两种不同然而类似的流体有相似的动力学方程,通过研究两种几何形状完全相同的不同流体的流动,雷诺指出要使描述这些流体流动的动力学方程完全相同,其条件是这两种流体的一个无量纲的参数(ulr)/m必须相同。这里 u是流体的特征速度、l是流动的特征长度、流体的密度、是粘滞系数、这个数被称为雷诺数R
?是
?ul?R??。
雷诺数给出了各种流体之间出现相似动力学规律的判据,它是相似性原理在流体力学中的体现。当一种流体的流动在某种条件会发生湍流,如果另一种流体在相同的条件下与这种流体的雷诺数相同,则另一种流体流动时也会发生湍流。
为了确定无量纲数的大小,雷诺设计了一个所图10.6.7所示的实验。将一长为L的玻璃管水平放置其一端与一个大水桶相连,另一端接上一开关。玻璃管的入口处呈喇叭状,它与一个装满染料的喷嘴相连,可以看到玻璃管内任何一点流体的流动情况。雷诺取染料的平均速率为特征速度,玻璃管的直径为特征长度,于是
R?
VD??。
当开关开的很小时流体的流动很慢,可以看到染料的流动呈直线状,这表明流体的流动是稳定的层流。随着开关的逐渐开大,染料的流动出现上下摆动,这时染料的流动已变为非稳定的了。将开关进一步开大,染料速度V及D增大到一定的程度时,染料扩散到整个玻璃管中,湍流出现了。这就是从层流变成湍流的图像,雷诺测得在出现湍流之前雷诺数R=2000。后来的研究工作进行了更仔细的测定,他们将水先放上几天让它完全静止,同时造一个相对水完全静止的环境再进行测量,得到的结果是R=4000。这个数叫做管流雷诺数的上临界数,对实际情况来说上临界值没有什么实际意义,因为管内流体在雷诺数>2000时就出现湍流了。
雷诺在实验中还发现,载流管内一旦出现湍流欲使它重新回到层流,则只有当R小于2000时流体才能完全恢复到层流,这个数就叫管流雷诺数的下临界数。这个数非常重要,它对不规则装置有重要意义,实验测得在各种不规则管内流动从层流过渡到湍流前的雷诺数在2000-4000这一范围内。层流的能耗正比与流体的平均速度,而湍流的能耗正比平均速度的1.7到2.0次方。
雷诺数的重要意义是它提供了一个用一种流体的实验结果来预言另一种流体在同样条件下可能会发生结果的科学方法。另外,由于湍流出现是依赖系统的参数,它同时也是一种无规则运动,所以近来有人认为湍流也是一种混沌现象,不过湍流问题在流体力学中还没有得到圆满的解决。
11.7 流体对固体的作用力 1)粘滞阻力、斯托克斯公式
当物体在流体中以速度v运动时,通常把物体本身为参照系,这时流体以速度 ?v相对物体流动,如果流体的速度不大可将其视为稳定流动。物体表面的流动层叫做附面层,它粘附在物