流体力学
11.1 流体的基本性质 1)压缩性
流体是液体与气体的总称。从宏观上看,流体也可看成一种连续媒质。与弹性 体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律
?v?p??kv
描述。大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。同样的条件下,水银的体积减少量不到原体积的百万分之四。因为液体的压缩量很小,通常可以不计液体的压缩性。气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得及改变就已快速地流动并迅速达到密度均匀。物理上常用 马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。
2)粘滞性
为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F。此时上板面下
的流体将受到一个平均剪应力F/A的作用,式中A是上板的面积。
实验表明,无论力F多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。若图10.1.1中的上板以速度u沿x方向运动下板静止,那么中间各层流体的速度是从0(下板)到u(上板)的一种分布,流体内各层之间形成流速差或速度梯度。实验结果表明,作用在流体上的切向力F正比与板的面积和流体上表面的速度u反比与板间流体的厚度l,所以F可写成
AuF??l,
因而流体上表面的剪应力可以写成
u????l。
u 式中
l是线段ab绕a点的角速度或者说是单位时间内流体的角形变。若用微
分形式表示更具有普遍性,这时上式可以改写成
du????dl,
dF??? 或
dudAdl。
上式就是剪应力所引起的一维流体角形变关系式,比例系数?称为流体的粘滞系数,上式叫做牛顿粘滞性定律。?为常数的流体称为牛顿流体,它反映了切应力与角形变是线性关系,?不是常数的流体称为非牛顿流体。
流体的粘滞系数?是反映流体粘滞性的大小的物理量,在国际单位制中,粘滞系数的单位是牛顿?秒/米2。所谓粘滞性是指当流体流动时,由于流体内各流动层之间的流速不同,引起各流动层之间有障碍相对运动的内“摩擦”,而这个内摩擦力就是上式中的切向力,物理学中把它称为粘滞阻力。因此上式实际上是流体内部各流动层之间的粘滞阻力。
实验表明,任何流体流动时其内部或多或少的存在粘滞阻力。例如河流中心的
水流动的较快,而靠近岸边的水却几乎不动就是水的粘滞性造成的。在实际处 理流体的流动问题时,若流动性是主要的粘滞性作用影响不大,则可认为流体 是完全没有粘滞性的,这种理想的模型叫做非粘滞性流体。
3)压力与压强
从前面的讨论知道静止流体表面上没有剪应力,所以容器壁作用在静止流体 表面上的力是与液体表面正交的,按牛顿第三定律流体作用在容器壁上的力也与 容器壁表面正交,这一点对静止液体内部也成立。在静止液体内过某一点作一假 想平面,平面一方流体作用该平面的力也总是垂直于该假想平面。流体表面与流 体内各点的压力一般是不一样的,在流体表面压力的方向只能是垂直于液体表面 ,而流体内部某点的压力沿各个方向都有,因为过流体内部一点我们可以取任意 方向的平面。在流体力学中为了描述流体内部的作用力,引入一个叫做压强的物 理量,规定压强是作用于流体内单位面积上垂直力的数值,它是一标量。为了计 算流体内某一点的压强,我们应该设想通过该点的假想平面?s是无限小的,若该 面上的正压力为?F,则定义该点的压强
?Fp?lim?s?0?s 。
在国际单位制中压强的单位是牛顿/米2,也称为帕用Pa表示。在实际应用中压强也有用等价的流体柱高表示的,如医用测量血压的仪器就是用水银柱高作为压强的单位。流体力学中压强是标量但力是矢量,面元的法向也是矢量。既然流体内部的力总是垂直于假想平面,因此可定义流体内某点力的方向与它所作用平面的内法线方向一致,这样作用流体内任一面元上的力?F可写成 dF= ?pds 。由于流体内部每一点都有压强所以说流体内每一点都存在压力,至于压力的方向由所考虑平面的法线决定,可以是任何的方向,当流体流动时压强与压力的关系不变。 4)流体的密度和比重
在流体力学中常用密度来描述流体的动力学规律,其定义和固体定义一样为单位体积流体的质量,即流体内某点的密度为
??lim
?mdm??v?0?vdv。
对均匀不可压缩的流体密度是常数,一般情况下流体内部各点的密度是不相同的。单位体积流体的重量称为流体的比重。设想在流体内部取一小体积?v,?v中包含流体的质量为?m,因而?v内流体的重量为?mg,由定义该流体的比重
?mg??lim??g?v?0?v 。