ÊýѧÆÚÍû£¬Ö¤Ã÷E£¨X£©£¼£®
¡¾·ÖÎö¡¿£¨1£©ÉèʼþAi±íʾ±àºÅΪiµÄ³éÌëÀï·ÅµÄÊǺÚÇò£¬Ôòp=p£¨A2£©=P£¨A2|A1£©P£¨A1£©+P£¨A2|
£©P£¨
£©£¬ÓÉ´ËÄÜÇó³ö±àºÅΪ2µÄ³éÌëÄڷŵÄÊǺÚÇòµÄ¸ÅÂÊ£®
£¬¡£¬
£¬P£¨x=£©=
£¬k=n£¬n+1£¬n+2£¬¡£¬
£¨2£©XµÄËùÓпÉÄÜȡֵΪ
n+m£¬´Ó¶øE£¨X£©=£¨£©=£¬ÓÉ´ËÄÜÖ¤Ã÷E£¨X£©£¼£®
¡¾½â´ð¡¿½â£º£¨1£©ÉèʼþAi±íʾ±àºÅΪiµÄ³éÌëÀï·ÅµÄÊǺÚÇò£¬ Ôòp=p£¨A2£©=P£¨A2|A1£©P£¨A1£©+P£¨A2|==
=
£®
£¬¡£¬
£¬
£©P£¨£©
Ö¤Ã÷£º£¨2£©¡ßXµÄËùÓпÉÄÜȡֵΪP£¨x=£©=
£¬k=n£¬n+1£¬n+2£¬¡£¬n+m£¬
¡àE£¨X£©=£¨£©=
=£¼=
=£¨?£©
=
¡àE£¨X£©£¼
=
£®
£¬
¡¾µãÆÀ¡¿±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢¿Õ¼äÏëÏóÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮
µÚ33Ò³£¨¹²34Ò³£©
µÚ34Ò³£¨¹²34Ò³£©