2017年江苏省高考数学试卷(含答案解析)

【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±2×

=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;

,则

(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;

方法二:设P(m,n),当m≠1时,

=

=

,求得直线l1及l1

的方程,联立求得Q点坐标,根据对称性可得求得P点坐标.

=±n2,联立椭圆方程,即可

【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,① 椭圆的准线方程x=±

,由2×

=8,②

由①②解得:a=2,c=1, 则b2=a2﹣c2=3, ∴椭圆的标准方程:

(2)方法一:设P(x0,y0),则直线PF2的斜率=,

则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),

直线PF1的斜率=,

则直线l2的斜率k2=﹣

,直线l2的方程y=﹣

第21页(共34页)

(x+1),

联立,解得:,则Q(﹣x0,),

由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=∴y02=x02﹣1,

则,解得:,则,

又P在第一象限,所以P的坐标为: P(

).

方法二:设P(m,n),由P在第一象限,则m>0,n>0, 当m=1时,当m≠1时,

不存在,解得:Q与F1重合,不满足题意, =

==﹣

, ,

=﹣

(x﹣1),②

由l1⊥PF1,l2⊥PF2,则直线l1的方程y=﹣

(x+1),①直线l2的方程y=﹣

), =±n2,

联立解得:x=﹣m,则Q(﹣m,由Q在椭圆方程,由对称性可得:

第22页(共34页)

即m2﹣n2=1,或m2+n2=1,

由P(m,n),在椭圆方程,,解得:,或,无

解,

又P在第一象限,所以P的坐标为: P(

).

【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.

18.(16分)(2017?江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10

cm,容器Ⅱ

的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.

(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,

第23页(共34页)

交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.

【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N, 在平面ACM中,过N作NP∥MC,交AC于点P, ∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD, 又∵AC?平面ABCD,∴CC1⊥AC,∴NP⊥AC, ∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm, ∵NP∥MC,∴△ANP∽△AMC, ∴

=

,得AN=16cm.

∴玻璃棒l没入水中部分的长度为16cm.

(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N, 在平面E1EGG1中,过点N作NP⊥EG,交EG于点P, 过点E作EQ⊥E1G1,交E1G1于点Q,

∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1, EG≠E1G1,

∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图, ∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm, ∴E1Q=24cm,

由勾股定理得:E1E=40cm,

∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos根据正弦定理得:

=

,∴sin

, ,cos

∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN=

=

=20cm.

∴玻璃棒l没入水中部分的长度为20cm.

第24页(共34页)

联系客服:779662525#qq.com(#替换为@)