方法二: 选m为研究对象,合外力的功为
A??mg?f?N?dr
考虑到N?dr?0,因而
A?Af?mgcos??|dr|?Af?mgR由于动能增量为?Ek???????20cos?d??Af?mgR
12mvB?0,因而按动能定理有 21212,Af??mgR?mvB。 Af?mgR?mvB22
方法三:选物体、地球组成的系统为研究对象,以B点为重力势能零点。 初始在A点时,Ep0?mgR、Ek0?0
12mvB 212由功能原理知:Af??E?E1?E0?mv?mgR
2终了在B点时,Ep?0,Ek?经比较可知,用功能原理求最简捷。
2.12 墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为k,物体m与桌面间的摩擦因素为?,若以恒力F将物体自平衡点向右拉动,试求到达最远时,系统的势能。 F f? X
习题2.12图
解:物体水平受力如图,其中fk?kx,f???mg。物体到达最远时,v?0。设此时物体的位移为x, 由动能定理有
fkm??F-kx-?mg?dx?0?0
0x即 Fx-12kx-?mgx?0 22?F??mg?
k2解出 x?2?F??mg?1系统的势能为 Ep?kx2?
2k2.13 一双原子分子的势能函数为
13
??r0?12?r0?6?Ep(r)?E0????2???
?r?????r??式中r为二原子间的距离,试证明: ⑴r0为分子势能极小时的原子间距; ⑵分子势能的极小值为?E0; ⑶当Ep(r)?0时,原子间距离为
r062;
d2EP(r)dEP(r)?0时,势能有极小值EP(r)min。由 证明:(1)当?0、2drdr6??r0?12?r012r06?dEP(r)d?r0???E0????2????12E0??13?7??0 drdr?r??r???r??r???r??r?得 ?0???0?
?r??r?所以r?r0,即r0为分子势能取极值时的原子间距。另一方面,
126?r012r06?d2EP(r)?12E0?1314?78? 2drr??r?137?72E0d2EP(r)?12E0?2?2??2?0,所以r?r0时,EP(r)取最小值。 当r?r0时,
dr2r0?r0r0?(2)当r?r0时,EP(r)min6??r?12???r00?E0????2?????E0
r??r0????0??6??r0?12?r0??(3)令EP(r)?E0????2????0,得到
?r?????r??66??r0?12r0?r0???r0??2?0r?,, ?2????????62?r???r????r??
2.14 质量为7.2×10-23kg,速度为6.0×107m/s的粒子A,与另一个质量为其一半而静止的粒子B相碰,假定这碰撞是弹性碰撞,碰撞后粒子A的速率为5×107m/s,求:
⑴粒子B的速率及偏转角; ⑵粒子A的偏转角。
v?A
14
? vA ?
? vB习题2.14图
解:两粒子的碰撞满足动量守恒
???mAvA?mAv'A?mBv'B
写成分量式有
mAvA?mAv'Acos??mBv'Bcos?
mAv'Asin??mBv'Bsin?
碰撞是弹性碰撞,动能不变:
11122mAvA?mAv'2?mv'ABB 222利用
mA?7.2?10?23kg, mB?mA?3.6?10?23kg, 2vA?6.0?107m/s,v'A?5.0?107m/s,
可解得
v'B?4.69?107m/s,??54?4',??22?20'。
2.15 平板中央开一小孔,质量为m的小球用细线系住,细线穿过小孔后挂一质量为M1的重物。小球作匀速圆周运动,当半径为r0时重物达到平衡。今在M1的下方再挂一质量为M2的物体,如题2-15图。试问这时小球作匀速圆周运动的角速度??和半径r?为多少? r0m
M1
M2
15
习题2.15图
解:在只挂重物M1时,小球作圆周运动的向心力为M1g,即
2M1g?mr0?0 ①
挂上M2后,则有
(M1?M2)g?mr???2 ②
重力对圆心的力矩为零,故小球对圆心的角动量守恒.
2222即 r0mv0?r?mv??r0?0?r??? ③
联立①、②、③得
?0?
M1g,mr0???M1g?M1?M2???mr0?M1?2/3,?M1?r?????M1?M2?3/2?r0
2.16 哈雷慧星绕太阳运动的轨道是一个椭圆。它离太阳最近距离为r1?8.75?10m时的速率是v1?5.46?10ms4?110,它离太阳最远时的速率是v2?9.08?10ms2?1,这时它离太阳的
距离r2是多少?(太阳位于椭圆的一个焦点。)
解:哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有
rv r1mv1?2m 2rv8.75?1010?5.46?10411∴ r2???5.26?1012[m] 2v29.08?10
2.17 查阅文献,对变质量力学问题进行分析和探讨,写成小论文。
参考文献:
[1]石照坤,变质量问题的教学之浅见,大学物理,1991年第10卷第10期。 [2]任学藻、廖旭,变质量柔绳问题研究,大学物理,2006年第25卷第2期。 2.18 通过查阅文献,形成对惯性系的进一步认识,写成小论文。
参考文献:
[1]高炳坤、李复,“惯性系”考,大学物理,2002年第21卷第4期。 [2]高炳坤、李复,“惯性系”考(续),大学物理,2002年第21卷第5期。
16