ͨÓðæ2020°æ¸ß¿¼Êýѧ´ó¶þÂÖ¸´Ï° ´óÌâרÏîÁ·Ï° ·ÖÀà»ã±àÈ«¼¯ ÎÄ

´óÌâרÏîÁ·(Ò») Èý½Çº¯Êý

A×é »ù´¡Í¨¹Ø

1.ÒÑÖªÔÚ¡÷ABCÖÐ,½ÇA,B,CµÄ¶Ô±ß·Ö±ðÊÇa,b,c,ÇÒccos B+(b-2a)cos C=0. (1)Çó½ÇCµÄ´óС;

(2)Èôc=2,Çó¡÷ABCµÄÃæ»ýSµÄ×î´óÖµ. ½â(1)ÒòΪccosB+(b-2a)cosC=0,

ËùÒÔsinCcosB+(sinB-2sinA)cosC=0, ËùÒÔsinCcosB+sinBcosC=2sinAcosC, ËùÒÔsin(B+C)=2sinAcosC. ÓÖÒòΪA+B+C=¦Ð, ËùÒÔsinA=2sinAcosC.

ÓÖÒòΪA¡Ê(0,¦Ð),ËùÒÔsinA¡Ù0,

ËùÒÔcosC=1

2.

ÓÖC¡Ê(0,¦Ð),ËùÒÔC=¦Ð

3. (2)ÓÉ(1)Öª,C=¦Ð

3,

ËùÒÔc2

=a2

+b2

-2abcosC=a2

+b2

-ab. ÓÖc=2,ËùÒÔ4=a2

+b2

-ab.

ÓÖa2

+b2

¡Ý2ab,µ±ÇÒ½öµ±a=bʱµÈºÅ³ÉÁ¢,

1

ËùÒÔab¡Ü4.ËùÒÔ¡÷ABCÃæ»ýµÄ×î´óÖµ(S1¡÷ABC)max=(1

2????sin??)

sin¦Ð

max

=2¡Á4¡Á3=¡Ì3.

2.Èçͼ,ÔÚÌÝÐÎABCDÖÐ,¡ÏA=¡ÏD=90¡ã,MΪADÉÏÒ»µã,AM=2MD=2,¡ÏBMC=60¡ã.

(1)Èô¡ÏAMB=60¡ã,ÇóBC;

(2)Éè¡ÏDCM=¦È,ÈôMB=4MC,Çótan ¦È.

½â(1)ÓÉ¡ÏBMC=60¡ã,¡ÏAMB=60¡ã,µÃ¡ÏCMD=60¡ã.

ÔÚRt¡÷ABMÖÐ,MB=2AM=4;ÔÚRt¡÷CDMÖÐ,MC=2MD=2.

ÔÚ¡÷MBCÖÐ,ÓÉÓàÏÒ¶¨Àí,µÃBC2

=BM2

+MC2

-2BM¡¤MC¡¤cos¡ÏBMC=12,BC=2¡Ì3. (2)ÒòΪ¡ÏDCM=¦È,

ËùÒÔ¡ÏABM=60¡ã-¦È,0¡ã<¦È<60¡ã.

ÔÚRt¡÷MCDÖÐ,MC=1

sin??; ÔÚRt¡÷MABÖÐ,MB=2

sin(60¡ã-??), ÓÉMB=4MC,µÃ2sin(60¡ã-¦È)=sin¦È,

ËùÒÔ¡Ì3cos¦È-sin¦È=sin¦È, ¼´2sin¦È=¡Ì3cos¦È,

ÕûÀí¿ÉµÃtan¦È=¡Ì32.

2

3.ÒÑÖªÏòÁ¿m=(2acos x,sin x),n=(cos x,bcos x),º¯Êýf(x)=m¡¤n-,º¯Êýf(x)ÔÚyÖáÉϵĽؾàΪ2,ÓëyÖá×î½üµÄ×î¸ßµãµÄ×ø±êÊÇ(12,1). (1)Çóº¯Êýf(x)µÄ½âÎöʽ;

(2)½«º¯Êýf(x)µÄͼÏóÏò×óÆ½ÒÆ¦Õ(¦Õ>0)¸öµ¥Î»,ÔÙ½«Í¼ÏóÉϸ÷µãµÄ×Ý×ø±ê²»±ä,ºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶,µÃµ½º¯Êýy=sin xµÄͼÏó,Çó¦ÕµÄ×îСֵ.

¡Ì3¦Ð

¡Ì32

½â(1)f(x)=m¡¤n-2=2acosx+bsinxcosx-2,

¡Ì32

¡Ì3,µÃ2

¡Ì3¡Ì32

¡Ì3ÓÉf(0)=2a-=

a=2,

´Ëʱ,f(x)=2cos2x+2sin2x,

¡Ì3??3??ÓÉf(x)¡Ü¡Ì4+4=1,µÃb=1»òb=-1,

2

µ±b=1ʱ,f(x)=sin(2??+3),¾­¼ìÑé(12,1)Ϊ×î¸ßµã;

¦Ð¦Ð

µ±b=-1ʱ,f(x)=sin(2??+

2¦Ð3

),¾­¼ìÑé(12,1)²»ÊÇ×î¸ßµã.

¦Ð

¹Êº¯ÊýµÄ½âÎöʽΪf(x)=sin(2??+3).

¦Ð

(2)º¯Êýf(x)µÄͼÏóÏò×óÆ½ÒÆ¦Õ¸öµ¥Î»ºóµÃµ½º¯Êýy=sin2x+2¦Õ+3µÄͼÏó,ºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶ºóµÃµ½º¯Êýy=sinx+2¦Õ+3µÄͼÏó,

ËùÒÔ2¦Õ+3=2k¦Ð(k¡ÊZ),¦Õ=-6+k¦Ð(k¡ÊZ), ÒòΪ¦Õ>0,ËùÒÔ¦ÕµÄ×îСֵΪ

5¦Ð6

¦Ð

¦Ð

¦Ð

¦Ð

.

4.º¯Êýf(x)=Asin(????+6)(A>0,¦Ø>0)µÄ×î´óֵΪ2,ËüµÄ×îСÕýÖÜÆÚΪ2¦Ð.

3

¦Ð

(1)Çóº¯Êýf(x)µÄ½âÎöʽ;

(2)Èôg(x)=cos x¡¤f(x),Çóg(x)ÔÚÇø¼ä[-

¦Ð6

,]ÉϵÄ×î´óÖµºÍ×îСֵ.

4

¦Ð

½â(1)ÓÉÒÑÖªf(x)×îСÕýÖÜÆÚΪ2¦Ð,

ËùÒÔ

2¦Ð

??=2¦Ð,½âµÃ¦Ø=1.

ÒòΪf(x)µÄ×î´óֵΪ2, ËùÒÔA=2,

ËùÒÔf(x)µÄ½âÎöʽΪf(x)=2sin(??+6).

¦Ð

(2)ÒòΪf(x)=2sin(??+6)=2sinxcos6+2cosxsin6=¡Ì3sinx+cosx,

¦Ð¦Ð¦Ð

ËùÒÔg(x)=cosx¡¤f(x)=¡Ì3sinxcosx+cosx=2sin2x+¦Ð

1

2

¡Ì31+cos2??2

=sin(2??+6)+2.

¦Ð

¦Ð

¦Ð

¦Ð

2¦Ð3

ÒòΪ-6¡Üx¡Ü4,ËùÒÔ-6¡Ü2x+6¡Ü

, ÓÚÊÇ,µ±2x+6=2,¼´x=6ʱ,g(x)È¡µÃ×î´óÖµ2;µ±2x+6=-6,¼´x=-6ʱ,g(x)È¡µÃ×îСֵ0. 5.ÒÑÖªº¯Êýf(x)=sin(¦Øx+¦Õ)(¦Ø>0,0<¦Õ<¦Ð)µÄһϵÁжÔÓ¦ÖµÈç±í:

¦Ð¦Ð¦Ð3¦Ð¦Ð¦Ð

x -4 0 ??0 ??6 ??40 ??2 3?? 40 y 1 1 2-1

4

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)