´óÌâרÏîÁ·(Ò») Èý½Çº¯Êý
A×é »ù´¡Í¨¹Ø
1.ÒÑÖªÔÚ¡÷ABCÖÐ,½ÇA,B,CµÄ¶Ô±ß·Ö±ðÊÇa,b,c,ÇÒccos B+(b-2a)cos C=0. (1)Çó½ÇCµÄ´óС;
(2)Èôc=2,Çó¡÷ABCµÄÃæ»ýSµÄ×î´óÖµ. ½â(1)ÒòΪccosB+(b-2a)cosC=0,
ËùÒÔsinCcosB+(sinB-2sinA)cosC=0, ËùÒÔsinCcosB+sinBcosC=2sinAcosC, ËùÒÔsin(B+C)=2sinAcosC. ÓÖÒòΪA+B+C=¦Ð, ËùÒÔsinA=2sinAcosC.
ÓÖÒòΪA¡Ê(0,¦Ð),ËùÒÔsinA¡Ù0,
ËùÒÔcosC=1
2.
ÓÖC¡Ê(0,¦Ð),ËùÒÔC=¦Ð
3. (2)ÓÉ(1)Öª,C=¦Ð
3,
ËùÒÔc2
=a2
+b2
-2abcosC=a2
+b2
-ab. ÓÖc=2,ËùÒÔ4=a2
+b2
-ab.
ÓÖa2
+b2
¡Ý2ab,µ±ÇÒ½öµ±a=bʱµÈºÅ³ÉÁ¢,
1
ËùÒÔab¡Ü4.ËùÒÔ¡÷ABCÃæ»ýµÄ×î´óÖµ(S1¡÷ABC)max=(1
2????sin??)
sin¦Ð
max
=2¡Á4¡Á3=¡Ì3.
2.Èçͼ,ÔÚÌÝÐÎABCDÖÐ,¡ÏA=¡ÏD=90¡ã,MΪADÉÏÒ»µã,AM=2MD=2,¡ÏBMC=60¡ã.
(1)Èô¡ÏAMB=60¡ã,ÇóBC;
(2)Éè¡ÏDCM=¦È,ÈôMB=4MC,Çótan ¦È.
½â(1)ÓÉ¡ÏBMC=60¡ã,¡ÏAMB=60¡ã,µÃ¡ÏCMD=60¡ã.
ÔÚRt¡÷ABMÖÐ,MB=2AM=4;ÔÚRt¡÷CDMÖÐ,MC=2MD=2.
ÔÚ¡÷MBCÖÐ,ÓÉÓàÏÒ¶¨Àí,µÃBC2
=BM2
+MC2
-2BM¡¤MC¡¤cos¡ÏBMC=12,BC=2¡Ì3. (2)ÒòΪ¡ÏDCM=¦È,
ËùÒÔ¡ÏABM=60¡ã-¦È,0¡ã<¦È<60¡ã.
ÔÚRt¡÷MCDÖÐ,MC=1
sin??; ÔÚRt¡÷MABÖÐ,MB=2
sin(60¡ã-??), ÓÉMB=4MC,µÃ2sin(60¡ã-¦È)=sin¦È,
ËùÒÔ¡Ì3cos¦È-sin¦È=sin¦È, ¼´2sin¦È=¡Ì3cos¦È,
ÕûÀí¿ÉµÃtan¦È=¡Ì32.
2
3.ÒÑÖªÏòÁ¿m=(2acos x,sin x),n=(cos x,bcos x),º¯Êýf(x)=m¡¤n-,º¯Êýf(x)ÔÚyÖáÉϵĽؾàΪ2,ÓëyÖá×î½üµÄ×î¸ßµãµÄ×ø±êÊÇ(12,1). (1)Çóº¯Êýf(x)µÄ½âÎöʽ;
(2)½«º¯Êýf(x)µÄͼÏóÏò×óÆ½ÒÆ¦Õ(¦Õ>0)¸öµ¥Î»,ÔÙ½«Í¼ÏóÉϸ÷µãµÄ×Ý×ø±ê²»±ä,ºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶,µÃµ½º¯Êýy=sin xµÄͼÏó,Çó¦ÕµÄ×îСֵ.
¡Ì3¦Ð
¡Ì32
½â(1)f(x)=m¡¤n-2=2acosx+bsinxcosx-2,
¡Ì32
¡Ì3,µÃ2
¡Ì3¡Ì32
¡Ì3ÓÉf(0)=2a-=
a=2,
´Ëʱ,f(x)=2cos2x+2sin2x,
¡Ì3??3??ÓÉf(x)¡Ü¡Ì4+4=1,µÃb=1»òb=-1,
2
µ±b=1ʱ,f(x)=sin(2??+3),¾¼ìÑé(12,1)Ϊ×î¸ßµã;
¦Ð¦Ð
µ±b=-1ʱ,f(x)=sin(2??+
2¦Ð3
),¾¼ìÑé(12,1)²»ÊÇ×î¸ßµã.
¦Ð
¹Êº¯ÊýµÄ½âÎöʽΪf(x)=sin(2??+3).
¦Ð
(2)º¯Êýf(x)µÄͼÏóÏò×óÆ½ÒÆ¦Õ¸öµ¥Î»ºóµÃµ½º¯Êýy=sin2x+2¦Õ+3µÄͼÏó,ºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶ºóµÃµ½º¯Êýy=sinx+2¦Õ+3µÄͼÏó,
ËùÒÔ2¦Õ+3=2k¦Ð(k¡ÊZ),¦Õ=-6+k¦Ð(k¡ÊZ), ÒòΪ¦Õ>0,ËùÒÔ¦ÕµÄ×îСֵΪ
5¦Ð6
¦Ð
¦Ð
¦Ð
¦Ð
.
4.º¯Êýf(x)=Asin(????+6)(A>0,¦Ø>0)µÄ×î´óֵΪ2,ËüµÄ×îСÕýÖÜÆÚΪ2¦Ð.
3
¦Ð
(1)Çóº¯Êýf(x)µÄ½âÎöʽ;
(2)Èôg(x)=cos x¡¤f(x),Çóg(x)ÔÚÇø¼ä[-
¦Ð6
,]ÉϵÄ×î´óÖµºÍ×îСֵ.
4
¦Ð
½â(1)ÓÉÒÑÖªf(x)×îСÕýÖÜÆÚΪ2¦Ð,
ËùÒÔ
2¦Ð
??=2¦Ð,½âµÃ¦Ø=1.
ÒòΪf(x)µÄ×î´óֵΪ2, ËùÒÔA=2,
ËùÒÔf(x)µÄ½âÎöʽΪf(x)=2sin(??+6).
¦Ð
(2)ÒòΪf(x)=2sin(??+6)=2sinxcos6+2cosxsin6=¡Ì3sinx+cosx,
¦Ð¦Ð¦Ð
ËùÒÔg(x)=cosx¡¤f(x)=¡Ì3sinxcosx+cosx=2sin2x+¦Ð
1
2
¡Ì31+cos2??2
=sin(2??+6)+2.
¦Ð
¦Ð
¦Ð
¦Ð
2¦Ð3
ÒòΪ-6¡Üx¡Ü4,ËùÒÔ-6¡Ü2x+6¡Ü
, ÓÚÊÇ,µ±2x+6=2,¼´x=6ʱ,g(x)È¡µÃ×î´óÖµ2;µ±2x+6=-6,¼´x=-6ʱ,g(x)È¡µÃ×îСֵ0. 5.ÒÑÖªº¯Êýf(x)=sin(¦Øx+¦Õ)(¦Ø>0,0<¦Õ<¦Ð)µÄһϵÁжÔÓ¦ÖµÈç±í:
¦Ð¦Ð¦Ð3¦Ð¦Ð¦Ð
x -4 0 ??0 ??6 ??40 ??2 3?? 40 y 1 1 2-1
4