线性代数第一章课后习题答案

习题1.1

1、写出下列随机试验的样本空间.

(1)生产产品直到有4件正品为正,记录生产产品的总件数.

(2)在单位园中任取一点记录其坐标.

(3)同时掷三颗骰子,记录出现的点数之和. 解:(1)??{4,5,6,7,8?} (2)??{(x.y)x?y?1} (3)??{3,4,5,6,7,8,9,10,?,18}

2、同时掷两颗骰子,

1

22x、y分别表示第一、二

两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.

解:

B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}

3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试

B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}

2

BC?{(1.1),(2.2),(3.3),(4.4)}

用语言描述下列事件.

A?A2 (1)1(A?A)A123 (2)

(3)A1A2?A1A2 解:(1)第1,2次都没有中靶

(2)第三次中靶且

第1,2中至少有一次中靶

(3)第二次中靶

4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:

(1)“至少有一次击中靶子”可表示为 ; (2)“恰有一次击中靶子”可表示为 ; (3)“至少有两次击中靶子”可表示为 ; (4)“三次全部击中靶子”可表示为 ; (5)“三次均未击中靶子”可表示为 ; (6)“只在最后一次击中靶子”可表示为 .

3

解:(1)A1?A2?A3; (2) A1A2A3?A1A2A3?A1A2A3; (3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) A1A2A3

(6) A1A2A3 5.证明下列各题

(1)A?B?AB (2)A?B?(A?B)?(AB)?(B?A)

证明:(1)右边=A(??B)?A?AB=????A且??B??A?B=左边

(2)右边=(AB)?(AB)?(BA)=????A或??B??A?B 习题1.2

1.设

A、B、C

三事件,

P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0,求A、B、C至少有一个发生的概率.

解:?P(AB)?0?P(ABC)?0

P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC)

=3?14?2?118?2 2.已知p(A)?0.5 ,P(AB)?0.2 , P(B)?0.4,求 (1)P(AB)(2)P(A?B), (3)P(A?B), (4)P(AB).

解:(1)

?A?B,?AB?A?P(AB)?P(A)?0.1

(2)

?A?B,?A?B?B?P(A?B)?P(B)?0.5

3.设P(A)=0.2 P(A?B)=0.6 A.B互斥,求P(B). 解:?A,B互斥,P(A?B)?P(A)?P(B) 故P(B)?P(A?B)?P(A)?0.6?0.2?0.4

,

4

联系客服:779662525#qq.com(#替换为@)