2014年数学建模作业题

《数学建模》期末作业题 20014-6-12

数学模型课程期末大作业题

要求:

1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod53所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,53)+1=48)。

2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo集合形式编程,其它可用Matlab或Mathmatica编写。

3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题

某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):

表1 产 品 收 益 磨 垂直钻孔 水平钻孔 镗 刨 p1 10 0.5 0.1 0.2 0.05 0 p2 6 0.7 0.2 0 0.03 0 p3 8 0 0 0.8 0 0.01 p4 4 0 0.3 0 0.07 0 p5 11 0.3 0 0 0.1 0.05 p6 9 0.2 0.6 0 0 0 p7 3 0.5 0 0.6 0.08 0.05 各种产品各月份的市场容量如下表(表2): 表2 产 品 一月 二月 三月 四月 五月 六月 p1 500 600 300 200 0 500 p2 1000 500 600 300 100 500 p3 300 200 0 400 500 100 p4 300 0 0 500 100 300 p5 800 400 500 200 1000 1100 p6 200 300 400 0 300 500 p7 100 150 100 100 0 60 每种产品存货最多可到100件。存费每件每月为0.5元。现在无存货。要求到6月底每种产品有存货50件。

工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。

在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

1

《数学建模》期末作业题 20014-6-12

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何?

注意,可假设每月仅有24个工作日。

2、安排问题:

在某给定区域内均匀分布若干个几何形状相同的小区域(小区域为边长a的正三角形)。在每个区域中心安排一个寻呼台,管理部门将拿出一贯频域区间由于安排这些寻呼台,这个频域区间被规则地分成若干频域区间,分别被依次标号为:1、2、3、……,每一个寻呼台被分配给一个具有标号的频率小区间,只要不相互干扰,标号相同的频域小区间可以被分配多个寻呼台使用,为了避免干扰,在安排过程中,应满足以下要求: 1)、距离为2a以内的两个寻呼台的编号至少必须相差2,在4a以内的寻呼台编号不能相同; 2)、除1)以外并考虑三角形区域在三个方向任意延伸的情况; 3)、除条件 1),2)外,但要求距离在2a以内的寻呼台编号至少相差R,此时能够得到什么结果?

请你在上述各种情况条件下建立数学模型,确立需要的频域区间的最小长度,即要求给出各种不同分配方案中所使用的最大编号达到最小。

3、电梯问题

某办公大楼有十一层高,办公室都安排在7,8,9,10,11层上.假设办公人员都乘电梯上楼,每

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@)