matlabÊý×ÖÐźŴ¦ÀíʵÑéÖ¸µ¼

ʵÑéÈý Àëɢʱ¼äÐźŵÄDTFT

3. ÌÖÂÛʵÑé³ÌÐò3ÖÐh1ºÍh2µÄ¹ØÏµÊÇʲô£¿Äĸö²ÎÊý¿ØÖÆÆµÒÆÁ¿£¿

4. ÌÖÂÛʵÑé³ÌÐò4ÖÐyÓëx1ºÍx2µÄ¹ØÏµÊÇʲô£¿h1ºÍh2Óëx1ºÍx2µÄ¹ØÏµÊÇʲô£¿h1ºÍhpÏàµÈÂð£¿

13

ʵÑéËÄ Àëɢʱ¼äÐźŵÄZ±ä»»

ʵÑéËÄ Àëɢʱ¼äÐźŵÄZ±ä»»

Ò»¡¢ÊµÑéÄ¿µÄ

£±. ÔËÓÃMATLABÀí½âZ±ä»»¼°Æä»æÖÆH(z)µÄÁ㼫µãͼ¡£ £². ÔËÓÃMATLAB¼ÆËãÄæZ±ä»»¡£

¶þ¡¢ÊµÑéÔ­Àí

£¨Ò»£©¡¢MATLABÔÚZTÖеÄÓ¦Óá£

ÏßÐÔʱ²»±äÀëɢʱ¼äϵͳµÄ³å¼¤ÏìÓ¦h(n)µÄz±ä»»ÊÇÆäϵͳº¯ÊýH(z)£¬ ÔÚMATLABÖпÉÒÔÀûÓÃÐÔÖÊÇó½âZ±ä»»£¬ÀýÈç¿ÉÒÔÀûÓÃÏßÐÔ¾í»ýÇóµÄZ±ä»»¡£ÈôH(z)µÄÊÕÁ²Óò°üº¬µ¥Î»Ô²£¬¼´ÏµÍ³ÎªÎȶ¨ÏµÍ³£¬¼´ÏµÍ³ÔÚµ¥Î»Ô²ÉÏz?e

£¨¶þ£©¡¢ÄæZ±ä»»

Z±ä»»¶ÔÓÚ·ÖÎöºÍ±íʾÀëÉ¢ÏßÐÔʱ²»±äϵͳ¾ßÓÐÖØÒª×÷Óᣵ«ÊÇÔÚMATLABÖв»ÄÜÖ±½Ó¼ÆËãZ±ä»»£¬µ«ÊǶÔÓÚһЩÐòÁпÉÒÔ½øÐÐÄæZ±ä»»¡£

ÒÑÖªÐòÁеÄZ±ä»»¼°ÆäÊÕÁ²Óò£¬ ÇóÐòÁгÆÎªÄæZ±ä»»¡£ ÐòÁеÄZ±ä»»¼°¹²ÄæZ±ä»»±íʾÈçÏ£º

j?´¦¼ÆËãµÄÊÇϵͳµÄƵÂÊÏìÓ¦¡£

X(z)? 1x(n)?X(z)zn?1dz,c?(Rx?,Rx?)??2?jc

ͨ³££¬Ö±½Ó¼ÆËãÄæZ±ä»»µÄ·½·¨ÓÐÈýÖÖ£ºÎ§Ïß»ý·Ö·¨¡¢³¤³ý·¨ºÍ²¿·Ö·Öʽչ¿ª·¨¡£ÔÚʵ¼ÊÖУ¬Ö±½Ó¼ÆËãΧÏß»ý·Ö±È½ÏÀ§ÄÑ£¬ÍùÍù²»Ö±½Ó¼ÆËãΧÏß»ý·Ö¡£ÓÉÓÚÐòÁеÄZ±ä»»³£ÎªÓÐÀíº¯Êý£¬Òò´Ë²ÉÓò¿·Ö·Öʽչ¿ª·¨±È½ÏÇкÏʵ¼Ê£¬ËüÊǽ«ÁôÊý¶¨Âɺͳ£ÓÃÐòÁеÄZ±ä»»Ïà½áºÏµÄÒ»ÖÖ·½·¨¡£

Éèx(n)µÄZ±ä»»X(z)ÊÇÓÐÀíº¯Êý£¬·Öĸ¶àÏîʽÊÇN½×£¬·Ö×Ó¶àÏîʽÊÇM½×£¬½«X(z)Õ¹³ÉһЩ¼òµ¥µÄ³£ÓõIJ¿·Ö·Öʽ֮ºÍ£¬Í¨¹ý³£ÓÃÐòÁеÄZ±ä»»ÇóµÃ¸÷²¿·ÖµÄÄæ±ä»»£¬ÔÙÏà¼Ó¼´µÃµ½Ô­ÐòÁÐx(n)¡£ÔÚMATLABÖÐÌṩÁ˺¯ÊýresiduezÀ´ÊµÏÖÉÏÊö¹ý³Ì£¬µ÷ÓøñʽÈçÏ£º

14

n?????x(n)z?n,Rx??z?Rx?

ʵÑéËÄ Àëɢʱ¼äÐźŵÄZ±ä»»

[R£¬P£¬K]= residuez£¨B£¬A£©

ÆäÖÐB¡¢A·Ö±ðÊÇÓÐÀíº¯Êý·Ö×Ó¶àÏîʽµÄϵÊýºÍ·Öĸ¶àÏîʽµÄϵÊý£¬Êä³öRÊÇÁôÊýÁÐÏòÁ¿£¬PÊǼ«µãÁÐÏòÁ¿¡£Èç¹û·Ö×Ó¶àÏîʽµÄ½×Êý´óÓÚ·Öĸ¶àÏîʽµÄ½×Êý£¬ÔòK·µ»ØÎª³£ÊýÏîµÄϵÊý¡£ Àý4.1 ¼ÆËã X(z)?µÄZ·´±ä»»¡£

ÓÉÓÚ·Öĸ¶àÏîʽΪ£º1?1.5zMATLABʵÏÖ£º clear b=1; a=[1,-1.5,0.5]; [R,P,K]=residuez(b,a) Êä³öR = 2 -1 P =

1.0000 0.5000 K = []

Òò´Ë£ºµÃµ½X(z)µÄ²¿·Ö·Öʽչ¿ªÎªX(z)?µÃx(n)?(2?0.5)u(n)¡£

Èý¡¢ÊµÑéÄÚÈÝÓë²½Öè

1. ÔËÐÐÏÂÃæ³ÌÐò£¬ÀûÓÃÏßÐÔ¾í»ýÇóZ±ä»»¡£ ÉèX1(z)?z?2?3z?12?1n?11,z?1

(1?z?1)(1?0.5z?1)?0.5z?2£¬Ôò

2?1?£¬¸ù¾Ý³£ÓÃÐòÁеÄz±ä»»¿É?1?11?z1?0.5z£¬X2(z)?2z?4z?3?5z£¬ÇóX3(z)?X1(z)?X2(z)

Óɱ任¶¨Òå¿ÉÖª£ºx1(n)?{1,2,3},n?{?1,0,1} x2(n)?{2,4,3,5},n?{?2,?1,0,1}

15

ʵÑéËÄ Àëɢʱ¼äÐźŵÄZ±ä»»

ͨ¹ýÇóx3(n)?x1(n)?x2(n)£¬ÔÙÇóÆäz±ä»»µÃµ½X3(z)?X1(z)?X2(z)¡£ MATLAB³ÌÐò£º x1=[]1,2,3]; x2=[2,4,3,5]; n1=-1:1; n2=-2:1; x3=conv(x1,x2) nb3=n1(1)+n2(1);

nc3=n1(length(x1))+n2(length(x2)); n3=[nb3:nc3]

£².ÒÑÖªÁ½¸öÏßÐÔʱ²»±äµÄÒò¹ûϵͳ£¬ÏµÍ³º¯Êý·Ö±ðΪ

1?z?NH2(z)??NH(z)?1?z1?aNz?N 1£¬

·Ö±ðÁîN=8£¬a=0.8£¬ÔËÐÐÏÂÃæ³ÌÐò¼ÆËã²¢ÏÔʾʾÕâÁ½¸öϵͳµÄÁã¡¢¼«µãͼ¼°·ùÆµÌØÐÔ¡£ ³ÌÐò£º

b=[1,0,0,0,0,0,0,0,-1]; %H1(z)ºÍH2(z)µÄ·Ö×Ó¶àÏîʽϵÊýÏòÁ¿ a0=1; %H1(z)·Öĸ¶àÏîʽϵÊýÏòÁ¿

a1=[1,0,0,0,0,0,0,0,-(0.8)^8]; % H2(z)µÄ·Öĸ¶àÏîʽϵÊýÏòÁ¿ [H, w]=freqz(b,a0); [H1, w1]=freqz(b,a1); subplot(2,2,1);zplane(b,a0);

xlabel(¡®Êµ²¿¡¯);ylabel(¡®Ð鲿¡¯); title(¡®H1 (z)ϵͳµÄÁ㼫µãͼ¡¯)£» subplot(2,2,2);zplane(b,a1);

16

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)