湖南工业大学
课 程 设 计
资 料 袋
理 学院(系、部) 2011 ~ 2012 学年第 一 学期 课程名称 计算材料学 指导教师 雷军辉 职称 讲师
学生姓名 余晓燕 专业班级 应用物理081班 学号 08411200135
题 目 计算BN的弹性常数
成 绩 起止日期 2011年 12月 4日 ~ 2011年 12 月 12 日
目 录 清 单
序号 1 2 3 4 5 6
湖南工业大学
材 料 名 称 课程设计任务书 课程设计说明书 课程设计图 资料数量 备 注 张
1
课程设计任务书
2011—2012 学年第 1 学期
理学院 学院(系、部) 应用物理学 专业 081 班级
课 程 名 称: 计算材料学 一、 设计题目: 计算BN的弹性常数
二、 完成期限:自 2011 年 12 月 4 日至 2011 年 12 月 12 日共 2 周 1. DFT基本理论,CASTEP使用方法 2. 晶体模型的建立与几何优化,相关性质的计算。 内 3. 计算BN的弹性常数 容 4. 结果分析 及 5. 报告写作与修改 任 务 起止日期 进 度 安 排 11-12-4-6 11-12-7 11-12-8 11-12-9 11-12-10-12 工作内容 熟悉DTT理论,软件安装,认识界面,熟悉基本操作 晶体模型建立,进行结构优化,计算物理性质 物理性质,力学性质的计算 计算BN的弹性常数 写出课程设计的总结实验报告.,修改成文 主 要 参 考 资 料 [1] Kohn W, Sham L J, Self-consistent equations including exchange and correlation effects [J]. Physical review, 1965, 140(4):A1133-A1338. [2] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Physical review, 1964,136(3):B864- B871. [3] 谢希德, 陆栋.固体能带理论[M].上海:复旦大学出版,1998. [4] Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical review B, 1992, 46(11): 6671-6687. 指导教师(签字): 年 月 日 系(教研室)主任(签字): 年 月 日
2
(计算材料)
设计说明书
计算BN的弹性常数
起止日期: 2011 年 12月 4日 至 2011 年 12月 12日
学班学成
生姓名 级 号 绩
余晓燕 081 08411200135
指导教师(签字)
理学院(部) 2011年 12 月 12 日
3
计算BN的弹性常数
背景 :
近年来,随着材料、物理、计算机和数学等学科的发展,应用计算的方法研究材料的结构、能量和性能已成为一门迅速发展的新兴学科-计算材料学。这种方法不仅能进行材料的计算模拟,而且能进行材料的计算机设计和相关性能的预测。随着计算机技术的飞速发展,第一性原理计算的方法在材料的结构和性能等方面的研究已取得了巨大的成功,第一性原理的方法是基于量子力学理论,从电子运动的层次研究材料的结构和相关性能。目前,CASTEP软件的主要功能是对半导体、非线性光学材料、金属氧化物、玻璃、陶瓷等固体材料,对电子工业、航空航天以及石化、化工等工业领域有着非常重要的战略意义。对这些材料而言,其电子的结构与性质,以及表面和界面的性质与行为都非常重要。CASTEP的量子力学方法,为深入了解固体材料的这些性质并进而设计新的材料,提供了强有力的工具。
基于密度泛函平面波赝势方法的CASTEP软件可以对许多体系包括像半导体、陶瓷、金属、矿石、沸石等进行第一性原理量子力学计算。典型的功能包括研究表面化学、能带结构、态密度、热学性质和光学性质。它也能够研究体系电荷密度的空间分布和体系波函数。CASTEP还可以用来计算晶体的弹性模量和相关的机械性能,如泊松系数等。半导体和其他固体材料的许多性能由电子性质决定,而电子性质又由原子结构决定,特别是缺陷在改变电子结构上的作用对半导体性质尤为重要。分子模拟,特别是量子物理技术,可用来预测原子和电子结构及分析缺陷对材料性能的影响。CASTEP能有效的研究存在点缺陷、空位、替代杂质、位错等的半导体和其它材料中的的性能。除此以外,它还可以被用来计算固体的振动性质,如声子色散关系、声子态密度等。这些计算结果可以用来分析表面吸附的振动性质,可以解释实验中的振动谱,可以研究在高温高压下的相稳定性等等。总的来说,它可以实现如下的功能: 1.计算体系的总能; 2.进行结构优化; 3.执行动力学任务:在设置的温度和关联参数下,研究体系中原子的运动行为; 4.计算周期体系的弹性常数; 5.化学反应的过度态搜索。
除此之外,计算一些晶体的性质,如能带结构、态密度、声子色散关系、声子态密度、光学性质、应力等。
下面介绍一下密度泛函理论、交换关联泛函近似、赝势方法和K-S方程迭代解法。
一、基础理论:
4