25.周长相等的三角形、平行四边形、长方形、正方形和圆,它们的面积依次增大。
面积相等的三角形、平行四边形、长方形、正方形和圆,它们的周长依次减少。 26.扇形弧长公式:L=πd÷360×n 扇形的面积公式:S= πr2÷360×n (n为扇形的圆心角度数)
27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的 这条直线叫做对称轴。
28.只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 只有5条对称轴的图形是:正五边形、五角星; ……
有无数条对称轴的图形是:圆、圆环。 29.直径所在的直线是圆的对称轴。
9
第六单元 百分数
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
百分数与分数的区别
(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.
(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
百分数应用
百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。
10
百分数的意义
1.百分数只可以表示分率,而不能表示具体量,所以不能带单位。 2.百分数的意义:表示一个数是另一个数的百分之几。 例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 6.百分率公式:
合格率=合格产品数×100% 发芽率=发芽种子数×100%
产品总数实验种子数 出勤率=
出勤人数应出勤人数×100% 达标率=达标学生人数×100%
学生总人数盐的质量盐水的质量成活率=成活的棵数×100% 含盐率=
总棵数×100%
×100%
小麦出粉率=面粉的质量×100% 出油率=
小麦的质量油的质量农作物的质量7.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
8.纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全。
9.纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
11
10.应纳税额:缴纳的税款叫应纳税额。 11.税率:应纳税额与各种收入的比率叫做税率。 12.应纳税额的计算:应纳税额=各种收入×税率
13.储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 14.存款的类型:存款分为活期、整存整取、零存整取等方式。 15.本金:存入银行的钱叫做本金。 16.利息:取款时银行多支付的钱叫做利息。
17.国家规定,存款的利息要按一定的税率纳税。国债的利息不纳税。 18.利率:利息与本金的比值叫做利率。
19.银行存款税后利息的计算公式:税后利息=本金×利率×时间×(1-税率) 20.银行存款利息的税金=利息×税率 或 银行存款利息的税金=本金×利率×时间×税率
21.国债利息的计算公式:利息=本金×利率×时间 22.本息:本金与利息的总和叫做本息。 打折:商店降价出售商品。 百分数应用题(一)
求增加百分之几?减少百分之几? 公式:增加百分之几=增加的部分÷单位1 减少百分之几=减少的部分÷单位1
例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
12