【新版】人教版六年级上册数学知识点汇总(新版)

第二单元 分数乘法

1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。 乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c 6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。 9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

1

11.分数应用题一般解题步骤。 (1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”) 找单位“1”: 在分率句中分率的前面;或“是”、“占”、 “比” 、“ 相当于”的后面

(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

(4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×写数量关系式技巧:

(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1?分率)=分率对应量 (5)根据已知条件和问题列式解答。 12.乘法应用题有关注意概念。

几。 几(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? 单位“1”×对应分率=对应量

(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前 “是、比、相当于、占、等于”后的规则。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,乙比甲少几分之几表示乙比甲少的数占甲的几分之几。

(甲-乙)÷乙 = 甲÷乙-1 (甲-乙)÷甲 = 1-乙÷甲

2

(4)江氏规则:多比少多,少比多少。如8比5多,6比9少,在应用题中如: 小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”

(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。 (6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。 (7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。 (9)分率与量要对应。

①多的比较量对多的分率; ②少的比较量对少的分率; ③增加的比较量对增加的分率; ④减少的比较量对减少的分率; ⑤提高的比较量对提高的分率; ⑥降低的比较量对降低的分率;

⑦工作总量的比较量对工作总量的分率; ⑧工作效率的比较量对工作效率的分率; ⑨部分的比较量对部分的分率; ⑩总量的比较量对总量的分率;

3

第三单元 分数除法

1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。

3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。 4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。

6.比值通常用分数、小数和整数表示。 7.比的后项不能为0。

8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商; 9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

10.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

4

联系客服:779662525#qq.com(#替换为@)