£¨2£©Ð¡ÍõµÄĸÇ×ÈÏΪСÍõÿÌì×îºÃÏû·Ñ7±Å£Ä̺Í2¿éÇúÆæ¡£ËýÈÏΪƫÀëÕâ¸öÁ¿Ô½´ó£¬¾Í
Ô½²»ºÃ¡£Èô¼Ç(c,m)ΪÇúÆæºÍÅ£Ä̵ÄÏû·ÑÊø£¬ÕâÖÖÆ«Àë¿ÉÒÔÓÃD?7?m?2?cÀ´¶ÈÁ¿¡£Ç뻳öСÍõµÄÎÞ²îÒìÇúÏß¡£
,p1?0,p2?2 10. ÒÑ֪ЧÓú¯ÊýΪu(x1,x2)?min?x2?3x1,x1?3x2?£¨1£©»³ö´ú±íu(x1,x2)?20µÄÄÇÌõÎÞ²îÒìÇúÏß
*p/px?0£¿ 121£¨2£©µ±Âú×ãʲôÌõ¼þʱ£¬±ØÓÐ*p/px?0£¿ 122£¨3£©µ±Âú×ãʲôÌõ¼þʱ£¬±ØÓÐ
****xxx/x£¨4£©Èç1¡¢2¶¼²»¿ÉÄÜΪÁ㣬ÔòÔÚ×îÓŵã12ΪºÎÖµ£¿Õâ¸ö¾ùºâµãΨһÂð£¿ÎªÊ²Ã´£¿
11. ijÈËÖ»¹ºÂòÁ½ÖÖÉÌÆ·£º¼¦µ°ºÍÆÏÌѾơ£ÐÇÆÚÒ»£¬´ËÈ˵Ä×îÓÅÑ¡ÔñΪMµã£»ÐÇÆÚ¶þ£¬¼¦µ°¼Û¸ñÉÏÕÇ£¬ÆÏÌѾƼ۸ñ²»±ä£¬´ËÈ˵Ä×îÓÅÑ¡ÔñΪTµã£»ÐÇÆÚÈý£¬¼¦µ°µÄ¼Û¸ñ»ØÂäµ½ÐÇÆÚÒ»µÄˮƽ£¬¶øÆÏÌѾƼ۸ñÔòÓÐÁËÌá¸ß£¬µ«´ËÈËÔÚ×îÓÅÑ¡ÔñµãµÄЧÓÃˮƽÈÔ±£³ÖÔÚÐÇÆÚ¶þµÄˮƽ¡£¸ÃÈ˵ÄÊÕÈëÔÚÒÔÉÏÈýÌìÄÚ±£³Ö²»±ä¡£ÎÊ£ºÈç¹û´ËÈËÔÚÐÇÆÚÈý¹ºÂòµÄ¼¦µ°ÉÙÓÚÐÇÆÚÒ»£¬ÄÇô¶ÔËûÀ´Ëµ£¬¼¦µ°ÊôÓÚÕý³£Æ·¡¢ÁÓÖÊÆ·µ«·Ç¼ª·ÒÆ·£¬»¹ÊǼª·ÒÆ·£¿Çë»Í¼£¬²¢ËµÃ÷ÀíÓÉ¡£
12. ÓÃÎÞ²îÒìÇúÏß·ÖÎöÃâ·Ñ·¢¸øÏû·ÑÕßÒ»¶¨Á¿µÄʵÎïÓë·¢¸øÏû·ÑÕß°´Êг¡¼Û¸ñ¼ÆËãµÄÕâЩ
ʵÎïÕÛËãµÄÏÖ½ð£ºÄÄÒ»ÖÖ¸øÏû·ÑÕß´øÀ´¸ü¸ßµÄЧÓã¬ÎªÊ²Ã´£¿
12
4 ЧÓÃ
Ò»¡¢ÅжÏÌâ
1.¶ÔÓÚÄâÏßÐÔÆ«ºÃ£¬ÑØ×Å´©¹ýÔµãµÄµÄÉäÏßÓëÎÞ²îÒìÇúÏß½»µãµÄ±ß¼ÊÌæ´úÂÊÊǺ㶨²»±äµÄ¡£
22.ЧÓú¯Êýu(x,y)?maxx,yÎÞ²îÒìÇúÏß³Ê͹״¡£
??3.¾ßÓÐu(x,y)?max?x,y?ЧÓú¯ÊýµÄÏû·ÑÕßÈÏΪÉÌÆ·xºÍyΪÍêÈ«»¥²¹Æ·¡£ 4.ЧÓú¯Êýu(x,y)?y?x2ÎÞ²îÒìÇúÏß³Ê͹״¡£
5.СÕÅÏû·ÑµÄÁ½ÖÖÉÌÆ·¾ùΪÑá¶ñÆ·£¬Ð§Óú¯ÊýΪu??max?x,y?,ËûµÄÎÞ²îÒìÇúÏß³Ê͹״¡£ 6.ЧÓú¯Êýu(x,y)?(x?y)2¶ÔÓ¦µÄÎÞ²îÒìÇúÏßΪÏòÏÂÇãбµÄÖ±Ïß¡£ 7.ЧÓú¯ÊýÊÇu(x,y)?x?y?y2,0?y?1¶ÔӦΪÁ¼ÐÔÆ«ºÃ¡£ 28.ЧÓú¯Êýu(x,y)?2©Rx+3©Ry±íʾ¿Â²¼¡ª¡ªµÀ¸ñÀ˹ƫºÃ¡£
9.ÃèÊö¼×Æ«ºÃµÄЧÓú¯ÊýʹµÃÆä¶ÔËùÓÐÏû·ÑÊøµÄЧÓÃÖµÊÇÒÒ¶ÔÏû·ÑÊøÐ§ÓÃÖµµÄƽ·½£¬Ôò¼×ÒÒÁ½È˾ßÓÐÏàͬƫºÃ¡£
10.ЧÓú¯Êýu(x,y)?min?6x?y,x?2y?¶ÔÓ¦ÎÞ²îÒìÇúÏßÔÚ×ø±êµã£¨8,9£©Éϵı߼ÊÌæ´úÂÊÊÇ?1¡£ 2¶þ¡¢µ¥Ñ¡Ìâ
1.СÕŵÄЧÓú¯ÊýΪu(x,y)?25xy,ËûÏÖÔÚÓÐ12µ¥Î»ÉÌÆ·x£¬8µ¥Î»ÉÌÆ·y£¬¶ÔÓÚͬÑùµÄÁ½ÖÖÉÌÆ·£¬Ð¡ÀîµÄЧÓú¯ÊýÊÇu(x,y)?4x?4y,СÀîÓµÓÐ9µ¥Î»ÉÌÆ·x,13µ¥Î»ÉÌÆ·y¡£ÏÂÁÐÄÄÖÖ˵·¨ÊÇÕýÈ·µÄ£¿
A.Ïà¶ÔÓÚ×Ô¼ºÏÖÓеÄÏû·ÑÊø£¬Ð¡ÕŸü¼ÓÆ«ºÃСÀîµÄ£¬¶øÐ¡Àî¸üÆ«ºÃ×Ô¼ºµÄÏû·ÑÊø
B.Ïà¶ÔÓÚ×Ô¼ºÏÖÓеÄÏû·ÑÊø£¬Ð¡Àî¸ü¼ÓÆ«ºÃÓÚСÕŵÄÏû·ÑÊø £¬µ«ÊÇСÕÅÆ«ºÃ×Ô¼ºµÄÏû·ÑÊø C.Á½È˸÷×ÔÆ«ºÃ¶Ô·½µÄÏû·ÑÊø D.ûÓÐÒ»·½Æ«ºÃ¶Ô·½µÄÏû·ÑÊø E.ÒòΪËûÃǾßÓв»Í¬µÄÆ«ºÃ£¬ËùÒÔûÓÐ×ã¹»µÄÐÅÏ¢ÍÆ¶Ï³ö˸üÏÛĽË
2.СÍõµÄЧÓú¯ÊýΪu(x,y)?min?2x?y,x?6y?,ÔÚÒÔxΪºáÖᣬyΪ×ÝÖáµÄÏû·Ñ¿Õ¼äÖУ¬´ËЧÓú¯Êý¶ÔÓ¦ÎÞ²îÒìÇúÏßÔÚ×ø±êµã£¨7,7£©µÄбÂÊΪ¶àÉÙ£¿ A.-1/2 B.-6/2 C.-1/6 D.-2 E.-7/7
3.СÂíµÄЧÓú¯ÊýΪu(x,y)?max?2x?y,2y?x?,ÒÔÏÂÄĸö˵·¨ÕýÈ·£¿ A.СÂíµÄÆ«ºÃÊÇÄâÏßÐÔµÄ
B.Èç¹ûСÂíÓµÓÐx±Èy¶à£¬ÔòÈκÎyÉÌÆ·µÄÔö¼Ó¶¼»á½µµÍËûµÄЧÓà C.Èç¹ûСÂíÓµÓÐx±Èy¶à£¬ÔòÈκÎyÉÌÆ·µÄ¼õÉÙ¶¼»á½µµÍËûµÄЧÓÃ
13
D.СÂí×ÜÊÇÆ«ºÃÏû·Ñ¸ü¶àÊýÁ¿µÄÉÌÆ· E.¶ÔСÂí¶øÑÔ£¬ÉÌÆ·xºÍyÊÇÍêÈ«Ìæ´úµÄ 4.ÓдúºÅΪA¡¢B¡¢C¡¢D¡¢E¡¢F¡¢GµÄÆß¸öÈË£¬AµÄЧÓú¯ÊýΪu(x,y)?xy,BµÄЧÓú¯ÊýΪ
DµÄЧÓú¯ÊýΪu(x,y)??u(x,y)?1000xy,CµÄЧÓú¯ÊýΪu(x,y)??xy£¬
1.EµÄxy?1ЧÓú¯ÊýΪu(x,y)?x?.Fy10000µÄЧÓú¯ÊýΪu(x,y)?x,GµÄЧÓú¯ÊýΪyu(x,y)?x(y?1).ÇëÎÊÒÔÉÏÄļ¸Î»µÄÆ«ºÃºÍAÏàͬ£¿
A.³ýÁËCÖ®ÍâµÄËùÓÐÈË B.BºÍE C.B¡¢DºÍE D.¶¼²»ÊÇ E.ËùÓÐÈË
x/y,y?0??5.СÄɵį«ºÃ¿ÉÒÔÓÃÒÔÏÂЧÓú¯Êý±íʾ£ºu(x,y)??£¬ÇëÎÊÏÂÁÐÄĸö˵·¨ÕýÈ·£¿
0,y?0??A.СÄɵÄÎÞ²îÒìÇúÏßΪ¾ØÐÎË«ÇúÏß B.СÄɶÔÁ½ÖÖÉÌÆ·Æ«ºÃÔ½¶àÔ½ºÃ
C.СÄɾßÓÐÄâÏßÐÔÆ«ºÃ D.СÄÉÓµÓÐ×î¼ÑÏû·Ñµã E.µ±y>0ʱСÄɵÄÎÞ²îÒìÇúÏßÊÇÏòÉÏÇãбµÄÖ±Ïß
6.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x,y)?y?4x¡£ËûÏÖÓÐ25µ¥Î»ÉÌÆ·xºÍ12µ¥Î»ÉÌÆ·y¡£Èç¹ûËû¶ÔÉÌÆ·xµÄÏû·Ñ¼õÉÙµ½0£¬ÔòÐèÒªÏû·Ñ¶àÉÙµ¥Î»µÄÉÌÆ·y²ÅÄÜʹËûµÄ×´¿öºÍÔÀ´Ò»ÑùºÃ£¿ A.48 B.37 C.32 D.112 E.ÒÔÉ϶¼²»¶Ô
7.СÍõµÄЧÓú¯ÊýΪu(x,y)?xy,СÍõÏÖÏû·Ñ5µ¥Î»ÉÌÆ·xºÍ25µ¥Î»ÉÌÆ·y.ÏÂÁÐÄÄÏîÊÇÕýÈ·µÄ£¿
A.СÍõ½«»áÔ¸Òâ·ÅÆú5µ¥Î»xÒÔ»»È¡1µ¥Î»y
B.Èç¹ûÿ·ÅÆú1µ¥Î»x,ÄÜ»»È¡5µ¥Î»ÒÔÉϵÄy£¬Ð¡Íõ½«Ô¸Òâ·ÅÆúËùÓеÄx C.СÍõ¶ÔxºÍyͬµÈϲ»¶£¬Ëû½«Ô¸ÒâÒÔ1µ¥Î»ÉÌÆ·»»1µ¥Î»ÁíÒ»ÖÖÉÌÆ· D.Èç¹ûСÍõ³ÖÓв»µÈÁ¿µÄxºÍy£¬ÔòÔÚÈÎÒâ´ú¼ÛÏ£¬Ëû¶¼Ô¸Òâ½øÐн»Ò× E.ÒÔÉϴ𰸶¼²»¶Ô
8.СÀîµÄЧÓú¯ÊýΪu(x,y)?x2?16xy?64y2,Ôò
A.СÀîµÄÆ«ºÃÊÇ·Ç͹µÄ B.СÀîµÄÎÞ²îÒìÇúÏßÊÇÌõÖ±Ïß C.СÀîÓµÓÐ×î¼ÑÏû·ÑµãD.СÀîµÄÎÞ²îÒìÇúÏßÊÇË«ÇúÏß E.ÒÔÉϴ𰸶¼²»¶Ô
9.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x,y)?y?5x¡£ËûÏÖÓÐ1µ¥Î»ÉÌÆ·xºÍ2µ¥Î»ÉÌÆ·y,Èç¹ûËû¶ÔÉÌÆ·xµÄÏû·Ñ¼õÉÙÖÁ0£¬ÔòËûÐèÒªÏû·Ñ¶àÉÙµ¥Î»ÉÌÆ·y²ÅÄÜʹËûµÄ×´¿öºÍÔÀ´Ò»ÑùºÃ£¿ A.14µ¥Î» B.9µ¥Î» C.11µ¥Î» D.7µ¥Î» E.ÒÔÉϴ𰸶¼²»¶Ô 10.ijÏû·ÑÕßÒԹ̶¨±ÈÀýÏû·Ñx1ºÍx2:ÿÏû·Ñ1µ¥Î»x2,Ëû×ÜÊÇÏû·Ñ2µ¥Î»x1.¿ÉÒÔ±íʾËûµÄÆ«ºÃµÄЧÓú¯ÊýΪÄÄÏ
A. u(x1,x2)?2x1x2 B. u(x1,x2)?2x1?x2 C. u(x1,x2)?x1?2x2 D. u(x1,x2)?min?2x1,x2? E. u(x1,x2)?minx1,2x2
14
5??
11.ijÏû·ÑÕß¾ßÓÐÁ¼ÐÔÆ«ºÃ£¬ÇÒµ±Ç°Ïû·ÑÊøµÄ±ß¼ÊÌæ´úÂÊMRSµÄ¾ø¶ÔÖµ´óÓÚ3.ÄÇô A.°´ÕÕ3µ¥Î»ÉÌÆ·2½»»»1µ¥Î»ÉÌÆ·1µÄ±ÈÀý»»×ßһЩÉÌÆ·1£¬Ò»¶¨Ê¹ËûµÄ¾³¿ö±äÔã B.°´ÕÕ3µ¥Î»ÉÌÆ·2½»»»1µ¥Î»ÉÌÆ·1µÄ±ÈÀý»»×ßһЩÉÌÆ·1£¬Ò»¶¨Ê¹ËûµÄ¾³¿ö±äºÃ C.°´ÕÕ3µ¥Î»ÉÌÆ·2½»»»1µ¥Î»ÉÌÆ·1µÄ±ÈÀý»»×ßһЩÉÌÆ·2£¬Ò»¶¨Ê¹ËûµÄ¾³¿ö±äÔã D.°´ÕÕ3µ¥Î»ÉÌÆ·2½»»»1µ¥Î»ÉÌÆ·1µÄ±ÈÀý»»×ßһЩÉÌÆ·2£¬Ò»¶¨Ê¹ËûµÄ¾³¿ö±äºÃ E.ÒÔÉÏ´ð°¸ÓÐÁ½¸öÊÇÕýÈ·µÄ
12.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x,y)?3min?x,y??y¡£Èç¹ûÔÚÒÔxΪºáÖᣬyΪ×ÝÖáµÄÏû·Ñ¿Õ¼äÖУ¬»ÎÞ²îÒìÇúÏߣ¬ÔòÓ¦¸ÃÊÇ
A.ÓÉÁ½ÌõÖ±Ïß×é³É£¬ÏཻÓÚx=4y,Ò»ÌõΪ´¹Ö±µÄ£¬ÁíÒ»ÌõбÂÊΪ-1 B.LÐ͵ģ¬ÇÒÕÛµãÔÚx=4yÉÏ C.LÐ͵ģ¬ÇÒÕÛµãÔÚx=yÉÏ D.ÓÉÁ½ÌõÖ±Ïß×é³É£¬ÏཻÓÚx=y,Ò»ÌõΪˮƽ£¬ÁíÒ»ÌõбÂÊΪ-3 E.LÐ͵ģ¬ÇÒÕÛµãÔÚx=3yÉÏ
13.ijÏû·ÑÕßÏû·ÑÉÌÆ·1ºÍÉÌÆ·2£¬ËûÈÏΪ2µ¥Î»ÉÌÆ·1×ÜÊǺÍ3µ¥Î»ÉÌÆ·2ÍêÈ«Ìæ´ú¡£ÒÔÏÂÄĸöЧÓú¯ÊýÎÞ·¨±íʾ´ËÏû·ÑÕߵį«ºÃ?
A.u(x1,x2)?3x1?2x2?1000 B. u(x1,x2)?9x12?12x1x2?4x22^ C. u(x1,x2)?min?3x1,2x2? D. u(x1,x2)?30x1?20x2?10000 E.ÖÁÉÙÒÔÉÏ´ð°¸ÖÐÓÐÁ½¸öÎÞ·¨±íʾ¸ÃÏû·ÑÕߵį«ºÃ
14.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x1,x2)?min?x1?2x2,2x1?x2?,ÆäÖÐx1ºÍx2·Ö±ðΪÏû·ÑÕ¨ÓñÃׯ¬ºÍÕ¨ÊíÌõµÄÊýÁ¿¡£¼ÙÉèËûÔÚÕ¨ÓñÃׯ¬ºÍÕ¨ÊíÌõÉϹ²»¨·Ñ$40,Èç¹ûÕ¨ÓñÃׯ¬µÄµ¥¼ÛΪ1£¬Õ¨ÊíÌõµÄµ¥¼ÛΪ4£¬ÔòËû½«Ïû·Ñ¶àÉÙÕ¨ÓñÃׯ¬ºÍÕ¨ÊíÌõ£¿
A.ÖÁÉÙÏû·ÑºÍÕ¨ÓñÃׯ¬Ò»ÑùÊýÁ¿µÄÕ¨ÊíÌõ£¬µ«ÊÇÒ²¿ÉÄÜÁ½Õß¶¼Ïû·Ñ B.ÖÁÉÙÏû·ÑºÍÕ¨ÊíÌõÒ»ÑùÊýÁ¿µÄÕ¨ÓñÃׯ¬£¬µ«ÊÇÒ²¿ÉÄÜÁ½Õß¶¼Ïû·Ñ C.¿Ï¶¨°ÑÊÕÈëÈ«Ïû·ÑÔÚÕ¨ÓñÃ×ÉÏ D.¿Ï¶¨°ÑÊÕÈëÈ«Ïû·ÑÔÚÕ¨ÊíÌõÉÏ E.Ïû·ÑͬµÈÊýÁ¿µÄÕ¨ÓñÃ׺ÍÊíÌõ
15.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x1,x2)?min?4x?y,5y?¡£ÔÚÒÔxΪºáÖᣬyΪ×ÝÖáµÄÏû·Ñ¿Õ¼äÖУ¬¸ÃÏû·ÑÕßµÄÎÞ²îÒìÇúÏß
A.ÓÉÏཻÓÚy=4xµÄÒ»Ìõ´¹Ö±ÏߺÍÒ»ÌõˮƽÏß¹²Í¬×é³É B.ÓÉÏཻÓÚx=4yµÄÒ»Ìõ´¹Ö±ÏߺÍÒ»ÌõˮƽÏß¹²Í¬×é³É C.ÓÉÏཻÓÚx=yµÄÒ»ÌõˮƽÏߺÍÒ»ÌõбÂÊΪ¸ºµÄÖ±Ïß×é³É D.ÓÉÏཻÓÚx=yµÄÒ»ÌõˮƽÏߺÍÒ»ÌõбÂÊΪÕýµÄÖ±Ïß×é³É E.ÓÉÏཻÓÚx=4yµÄÒ»ÌõˮƽÏߺÍÕýÏòбÂʵÄÖ±Ïß×é³É Èý¡¢¼ò´ðÌâ
1.ijÏû·ÑÕßµÄЧÓú¯ÊýΪu(x,y)?x?y,a,b?0¡£ÇëÎÊ£¬Ðè¶ÔÁ½¸öϵÊýaºÍb·Ö±ðÔö¼Óʲô¶îÍâÔ¼Êø²ÅÄÜÂú×ãÒÔÏÂÆ«ºÃ?
£¨1£©Æ«ºÃÊÇÄâÏßÐÔÆ«ºÃ£¬ÇÒÎÞ²îÒìÇúÏß³Ê͹ÐÔ¡£ £¨2£©Æ«ºÃÊÇÏàËÆÆ«ºÃ¡£
£¨3£©Æ«ºÃÊÇÏàËÆÆ«ºÃ£¬ÇÒÎÞ²îÒìÇúÏß³Ê͹ÐÔ¡£
ab 15