义式I=q/t该式的研究对象是通电导体的某一截面,若在t时间内流过该截面的电量为q,则流过该切面的电流为I=q/t,显然,这个电流应为对时间的平均值,因此该式应写为I= q/t ,变形后可以得q=It,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=
??,?t显然该感应电动势也为对其时间的平均值,再由I=
??E(R为回路中的总电阻)可以得到I=。
R?tR综上可得q=
????B?s。若B不变,则q== RRR电量q与安培力的冲量之间有什么联系?可用下面的框图来说明。
28如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 29)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能
30如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁
场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1
变式训练32: 如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,
现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。
9
变式训练33:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。
变式训练34:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过T=5.0s,金属杆甲的加速度为a=1.37 m/s,求此时两金属杆的速度各为多少?
2
一、填空题
1、空间存在以、为边界的匀强磁场区域,磁感强度大小为B,方向垂直纸面向外,区
重合,长度为,长边的长度为
域宽为,现有一矩形线框处在图中纸面内,它的短边与2,如图所示,某时刻线框以初速沿与
垂直的方向进入磁场区域,同时某人对线框施
以作用力,使它的速度大小和方向保持不变。设该线框的电阻为R,从线框开始进入磁场到完全离开磁场的过程中,人对线框作用力所做的功等于 。
2、如图所示,矩形单匝线框绕OO′轴在匀强磁场中匀速转动。若磁感应强度增为原来的2倍,则线框转一周产生的热量为原来 倍
二、选择题
3、光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )
2
10
A.mgb B.mv2 C.mg(b-a) D.mg(b-a)+ mv2
4、如图所示,相距为d的两水平虚线和分别是水平向里的匀强磁场的边界,磁场的磁感
应强度为B,正方形线框abcd边长为L(L ,cd边刚穿出磁场时速度也为 。从ab边刚进入磁场到 cd边刚穿出磁场的整个过程中 ( ) A.线框一直都有感应电流 B.线框有一阶段的加速度为g C.线框产生的热量为mg(d+h+L) D.线框作过减速运动 5、如图所示,质量为m,高度为h的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( ) A.mgh B.2mgh C.大于mgh,小于2mgh D.大于2mgh 6、如图所示,图中回路竖直放在匀强磁场中磁场的方向垂直于回路平面向内。导线AC可以贴着光滑竖直长导轨下滑。设回路的总电阻恒定为R,当导线AC从静止开始下落后,下面有关回路能量转化的叙述中正确的是 ( ) A.导线下落过程中,机械能守恒; B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量; C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能; D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能 7、如图所示,虚线框abcd内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直于纸面;实线框a'b'c'd'是一正方形导线框,a'b'边与ab边平行。若将导线框匀速地拉离磁场区域,以W1表示沿平行于ab的方向拉出过程中外力所做的功,W2表示以同样的速率沿平行于bc的方向拉出过程中外力所做的功,则 A.W1= W2 B.W2=2W1 C.W1=2W2 D.W2=4W1 8、如图所示,两根光滑的金属导轨,平行放置在倾角为θ斜角上,导轨的左端接有电阻R,导轨自身的电阻可忽路不计。斜面处在一匀强磁场中,磁场方向垂直于斜面向上。质量为m,电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。在这过程中( ) A.作用于金属捧上的各个力的合力所作的功等于零 B.作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和 11 C.恒力F与安培力的合力所作的功等于零 D.恒力F与重力的合力所作的功等于电阻R上发出的焦耳热 9、如图6所示,两根平行放置的竖直导电轨道处于匀强磁场中,轨道平面与磁场方向垂直。当接在轨道间的开关S断开时,让一根金属杆沿轨道下滑(下滑中金属杆始终与轨道保持垂直,且接触良好)。下滑一段时间后,闭合开关S。闭合开关后,金属沿轨道下滑的速度—时间图像不可能为( ) 10、一个电热器接在10 V的直流电源上,在时间t内产生的热量为Q,今将该电热器接在一交流电源上,它在2t内产生的热量为Q,则这一交流电源的交流电压的最大值和有效值分别是 ( ) A.最大值是10 V,有效值是10 V B.最大值是10 V,有效值是5V C.最大值是5V,有效值是5 V D.最大值是20 V,有效值是10V 11、如图所示abcd为一竖直放置的矩形导线框,其平面与匀强磁场方向垂直。导线框沿竖直方向从磁场上边界开始下落,直到ab边出磁场,则以下说法正确的是( ) A、线圈进入磁场和离开磁场的过程中通过导体横截面上的电荷量相等 B、线圈进入磁场和离开磁场的过程中通过导体上产生的电热相等 C、线圈从进入磁场到完全离开磁场的过程中通过导体上产生的电热等于线圈重力势能的减小 D、若线圈在ab边出磁场时已经匀速运动,则线圈的匝数越多下落的速度越大 三、综合题 12、 (12分) 如图所示,一个交流高压电源的电压恒为660v,接在变压器上给负载供电。已知变压器副线圈的匝数为n2=110匝,灯泡D1、D2、D3、D4是完全相同的灯泡,其上标有“220v,220W”,1、若起初电路中没有灯泡D1时,灯泡D2、D3、D4均正常发光,则变压器的原副线圈的匝数比n1:n2为多少?原线圈中磁通量变化率的最大值为多少?2、若在原线圈上接上灯泡D1时,则灯泡D2的实际功率为多少?(不考虑灯泡电阻随温度的变化) 12