È˽̰æ¸ßÖÐÊýѧѡÐÞ2-2ѧ°¸
ÉèÁ½¸öº¯Êý·Ö±ðΪf(x)ºÍg(x),
£¨1£©[cf(x)]?_____________; £¨2£©?f(x)?g(x)???___________£» £¨3£©?f(x)?g(x)???_______________£» ???f(x)£¨4£©??________________(g(x)?0)£® ??g(x)?¸ÐÎò£º
'³£ÊýÓ뺯ÊýµÄ»ýµÄµ¼Êý£¬µÈÓÚ³£Êý³Ëº¯ÊýµÄµ¼Êý£¬¼´£º?cf(x)??cf(x).
'¶ÔµãÁ·Ï°£º
1.ÏÂÁеÈʽ³ÉÁ¢µÄÊÇ( )
A.(3)??3 B.(2x3)??5x2 C.(?2x3)???6x2 D.(2x5)??10x5 2.Èôy£½x£«x£¬Ôòy??( )
2A.2x B.2x+1 C.3x D.x2+1 3.Éèy?x2ex,Ôòy??( )
2xxA. xe?2x B.2xe
C. (2x?x)e D. (x?x)e 4.Éèy?2x2xsinx£¬Ôòy??__________________. x23
È˽̰æ¸ßÖÐÊýѧѡÐÞ2-2ѧ°¸
¡¾ºÏ×÷̽¾¿¡¿
µäÀý¾«Îö£º Àý1.ÇóÏÂÁк¯ÊýµÄµ¼Êý£º
£¨1£©y?2x; (2)y?x3?2x?3£»
2x(3)y=xsinx; (4)y=.
x ±äʽÁ·Ï°£º ÇóÏÂÁк¯ÊýµÄµ¼Êý£º
£¨1£©f(x)?x3sinx; (2) y=x?13lnx; x £¨3£©y?cosx; (4)y=(x2-2)(x+1). xe
Àý2.Çóº¯Êýy=(sinxx?cos)2-1µÄµ¼º¯Êý. 22 ±äʽÁ·Ï°£º Çóº¯Êýy?1?x1?x?1?x1?xµÄµ¼º¯Êý.
Àý3.ÇúÏßy=xex+2x+1ÔÚµã(0,1)´¦µÄÇÐÏß·½³Ì.
24
È˽̰æ¸ßÖÐÊýѧѡÐÞ2-2ѧ°¸
±äʽÁ·Ï°£ºÈôÇúÏßf(x)=xsinx+1ÔÚx=
?´¦µÄÇÐÏßÓëÖ±Ïßax+2y+1=0»¥Ïà´¹Ö±£¬ÇóʵÊýaµÄÖµ. 2 ¹æÂÉ×ܽ᣺ 1.¶ÔÓÚºÍÓë²îµÄµ¼ÊýÔËËã·¨Ôò£¬´Ë·¨Ôò¿ÉÒÔÍÆ¹ãµ½ÈÎÒâÓÐÏÞ¸ö¿Éµ¼º¯ÊýµÄºÍÓë²î£¬¼´£º[f1(x)?
??f2(x)?¡fn(x)]?=f1?(x)? f2(x)?¡?fn(x).
2.¶ÔÓÚ»ýÓëÉ̵ĵ¼ÊýµÄÔËËã·¨Ôò£¬Ê×ÏÈҪעÒâ²»ÄܳöÏÖ[f(x)?g(x)]??f?(x)?g?(x)ÒÔ¼°
[f(x)f?(x)]??ÕâÑùµÄ´íÎ󣻯ä´Î£¬»¹ÒªÌرð×¢ÒâÁ½¸öº¯Êý»ýÓëÉ̵ÄÇóµ¼¹«Ê½ÖеķûºÅµÄÒìͬ£¬»ý
?g(x)g(x)µÄÇóµ¼¹«Ê½ÖÐÊÇ¡°+¡±£¬É̵ÄÇóµ¼¹«Ê½ÖÐÊÇ¡°-¡±.
¡¾¿ÎÌÃС½á¡¿
¡¾µ±Ìôï±ê¡¿
1.ÒÑÖªf(x)?x?£¬Èôf?(?1)??4£¬Ôò?µÄÖµ( )
A.Ò»4 B. 4 C.¡À4 D.²»È·¶¨
2.Èôº¯Êýf(x)=x+bx+cµÄͼÏóµÄ¶¥µãÔÚµÚËÄÏóÏÞ£¬Ôòº¯Êýf?(x)µÄͼÏóÊÇ£¨ £©
2
25
È˽̰æ¸ßÖÐÊýѧѡÐÞ2-2ѧ°¸
3.Èôf(x)=x2ex£¬Ôòf?(2)?_____________. 4.ÇóÏÂÁк¯ÊýµÄµ¼Êý£º
(1)f(x)£½x2£«sinx£»
32£¨2£©g(x)£½x£x£6x£«2£®
32
(3)h(x)£½xsinx£»
£¨4£©f(x)£½2xlnx.
¡¾¿Îʱ×÷Òµ¡¿
1. 1.º¯Êýy?mx2m?nµÄµ¼ÊýΪy??4x3,Ôò( )
A.m??1,n??2 B.m??1,n?2
C.m?1,n?2 D.m?1,n??2
x22.º¯Êýy?µÄµ¼º¯ÊýΪ__________________.
x?3
11
3. Ö±Ïßy£½£x£«bÊǺ¯Êýf(x)£½µÄÇÐÏߣ¬Ôòb£½________.
4x
4.ÇóÏÂÁк¯ÊýµÄµ¼Êý£º
26