期末考试试题集-自动控制原理(含完整答案)

42.建立图示系统的数学模型,并以传递函数形式表示。

i2 (t) C1

R1 i1 (t) u i (t) C2

43.已知具有局部反馈回路的控制系统方块图如图所示,求: (1)系统稳定时Kf 的取值范围; (2)求输入为x(t)?R2 u 0 (t) 12t时,系统的静态加速度误差系数Ka; 2(3)说明系统的局部反馈Kf s对系统的稳态误差ess的影响。 X0(s) 1Xi(s) s?1 s(s?1)s- -

44.伺服系统的方块图如图所示,试应用根轨迹法分析系统的稳定性。 Kfs Xi(S) X0(S) 1 K s(s?1) - 0.5s?1

自动控制原理8

1. 输入与输出均已给出,确定系统的结构和参数,称为( )

A.最优设计 B.系统辨识 C.系统分析 D.最优控制 2. 对于代表两个或两个以上输入信号进行( )的元件又称比较器。 A.微分 B.相乘 C.加减 D.相除 3. 直接对控制对象进行操作的元件称为( )

A.比较元件 B.给定元件 C.执行元件 D.放大元件 4. 某环节的传递函数是G?s??5s?3?2,则该环节可看成由( )环节串联而组成。 sA.比例、积分、滞后 B.比例、惯性、微分 C.比例、微分、滞后 D.比例、积分、微分

5. 已知系统的微分方程为6x?0?t??2x0?t??2xi?t?,则系统的传递函数是( ) A.

1 B.2 C.1 D.2

6s?23s?23s?13s?16. 梅逊公式主要用来( )

A.判断稳定性 B.计算输入误差 C.求系统的传递函数 D.求系统的根轨迹 7. 一阶系统G(s)=

K的放大系数K愈小,则系统的输出响应的稳态值( ) Ts?1A.不变 B.不定 C.愈小 D.愈大 8. 二阶欠阻尼系统的性能指标中只与阻尼比有关的是 ( ) A.上升时间 B.峰值时间 C.调整时间 D.最大超调量

9. 在用实验法求取系统的幅频特性时,一般是通过改变输入信号的( )来求得输出信号的幅值。 A.相位 B.频率 C.稳定裕量 D.时间常数 10.设开环系统频率特性G(jω)=

4,当ω=1rad/s时,其频率特性幅值A(1)=( ) 3(1?j?)2 B.42 C.2 D.22 411.一阶惯性系统G(s)?1的转角频率指??( )

s?2A.2 B.1 C.0.5 D.0

K12.设单位负反馈控制系统的开环传递函数G(s)?,其中K>0,a>0,则闭环控制系统的稳定性s(s?a)A.

与( )

A.K值的大小有关 B.a值的大小有关 C.a和K值的大小无关 D.a和K值的大小有关

13.已知二阶系统单位阶跃响应曲线呈现出等幅振荡,则其阻尼比可能为( ) A.0.707 B.0.6 C.1 D.0

14.系统特征方程式的所有根均在根平面的左半部分是系统稳定的( ) A.充分条件 B.必要条件 C.充分必要条件 D.以上都不是 15.以下关于系统稳态误差的概念正确的是( )

A.它只决定于系统的结构和参数 B.它只决定于系统的输入和干扰 C.与系统的结构和参数、输入和干扰有关 D.它始终为0

16.当输入为单位加速度且系统为单位反馈时,对于I型系统其稳态误差为( ) A.0 B.0.1/k C.1/k D.? 17.若已知某串联校正装置的传递函数为Gc(s)?2s,则它是一种( ) A.相位滞后校正 B.相位超前校正 C.微分调节器 D.积分调节器

18.在系统校正时,为降低其稳态误差优先选用( )校正。

A.滞后 B.超前 C.滞后-超前 D.减小增益 19.根轨迹上的点应满足的幅角条件为?G?s?H?s??( )

A.-1 B.1

C.±(2k+1)π/2 (k=0,1,2,…) D.±(2k+1)π(k=0,1,2,…) 20.主导极点的特点是( )

A.距离虚轴很近 B.距离实轴很近 C.距离虚轴很远 D.距离实轴很远 21.对控制系统的首要要求是系统具有 。

22.利用终值定理可在复频域中得到系统在时间域中的 。 23.传递函数反映了系统内在的固有特性,与 无关。 24.若减少二阶欠阻尼系统超调量,可采取的措施是 。

25.已知超前校正装置的传递函数为Gc(s)?2s?1,其最大超前角所对应的频率?m?__ __。

0.32s?126.延迟环节不改变系统的幅频特性,仅使 发生变化 27.某典型环节的传递函数是G(s)?1,则系统的时间常数是 。 s?228.在扰动作用点与偏差信号之间加上 能使静态误差降为0。 29.微分控制器是针对被调量的 来进行调节。 30.超前校正主要是用于改善稳定性和 。

41.系统方框图如下,求其传递函数

C?s?。 R(s)H2(s) G3(s) R (s) + Δ? G1(s) + ? G2(s) ? + H1(s) + G4(s) G5(s) C (s) 42.建立图示系统的数学模型,并以传递函数形式表示。 C1 u i (t)

43.已知系统的传递函数G(S)?R2 R1 C2 u 0 (t) 10(10S?1),试分析系统由哪些环节组成并画出系统的Bode图。

S?144.单位反馈系统的开环传递函数为Gk(s)?1,求: s?11)系统在单位阶跃信号输入下的稳态偏差是多少;

?2)当系统的输入信号为xi(t)?sin(t?30),系统的稳态输出?

自动控制原理1试题答案及评分参考

一、单项选择题(每小题 1 分,共 20 分)

1 .C 2 .A 3 .C 4 .A 5 .B 6 .C 7 .B 8 .B 9 .A 10.D 11.A 12.C 13.C 14.C 15.D 16.B 17.A 18.B 19.C 20.B 二、填空题(每空 1 分, 共 10 分)

21.反馈控制 22.传递函数 23.时间常数T (或常量) 24.偏移程度 25.开环幅频特性 26.阶跃信号 27.相位 28.?45? 29.比例 30.远

三、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解:

G(s)?42.解:

G1G2G3?G1G4 (5分)

1?G1G2H1?G2G3H2?G1G2G3H3?G1G2H3?G4H2?0(t)?k1x0(t)?k2[xa(t)?x0(t)]?DsX0(s)?k1X0(s)?k2[Xa(s)?X0(s)]Dx?a(t)?k2[xa(t)?x0(t)]?fi(t)?Ms2Xa(s)?k2[Xa(s)?X0(s)]?Fi(s)M?x(2.5分)

G?s?? 43.解:

k2 (2.5分)

mDs3?m?k1?k2?s2?k2Ds?k1k2G(s)?Y(s)k?2 (2分) Xi(s)s?k1ks?k???1??2Mp?e?6?5?0.2???0.456 (2分) 5tp???n1??2?2 (2分)

2?n?8.06?k??n?49.8?50 (2分)

k1?44.解:

2??n?0.13 (2分) k由图知该系统的开环传递函数为

13k1?22 (2分) sTs?2?Ts?1 其中T= (1分) 由低频渐近线与横轴交点为??10,得k?10 (2分) 修正量L?????20log(2?)?10,得??0.158 (2分) 故所求开环传递函数为

10?1?s?s2?0.105s?1??9?T? (3分)

或记为

k (k?10s(T2s2?2?Ts?1)13??0.158)

自动控制原理2试题答案及评分参考

一、单项选择题(每小题 1 分,共 20 分)

联系客服:779662525#qq.com(#替换为@)