概率论与数理统计 - 教案32课时

例11对以往数据分析结果表明, 当机器调整得良好时, 产品的合格率为98%, 而当机器发生某种故障时, 其合格率为55%. 每天早上机器开动时, 机器调整良好的概率为95%. 试求已知某日早上第一件产品是合格时, 机器调整得良好的概率是多少?

例12设某批产品中, 甲, 乙, 丙三厂生产的产品分别占45%, 35%, 20%, 各厂的产品的次品率分别为4%, 2%, 5%, 现从中任取一件,(1) 求取到的是次品的概率;(2) 经检验发现取到的产品为次品, 求该产品是甲厂生产的概率.

例13 根据以上的临床记录,某种诊断癌症的是眼睛有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)?0.95,P(A|C)?0.95 现在对自然人群进行普查, 设备试验的人患有癌症的概率为0.005, 即P(C)?0.005, 试求 P(C|A).

思考题

1.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?

第五节 事件的独立性

一、 两个事件的独立性

定义 若两事件A,B满足P(AB)?P(A)P(B) (1)则称A,B独立, 或称A,B相互独立. 注: 当P(A)?0,P(B)?0时, A,B相互独立与A,B互不相容不能同时成立. 但?与S既相互独立又互不相容(自证).

定理1 设A,B是两事件, 且P(A)?0,若A,B相互独立, 则P(A|B)?P(A). 反之亦然. 定理2 设事件A,B相互独立,则下列各对事件也相互独立: A与B,A与B,A与B.

二、有限个事件的独立性

P(AB)?P(A)P(B),P(AC)?P(A)P(C),定义:A,B,C为三个事件, 若满足等式则称事件A,B,C相互独立.

P(BC)?P(B)P(C),P(ABC)?P(A)P(B)P(C),对n个事件的独立性, 可类似写出其定义:

定义 设A1,A2,?,An是n个事件, 若其中任意两个事件之间均相互独立, 则称A1,A2,?,An两两独立.

三、 相互独立性的性质

性质1 若事件A1,A2,?,An(n?2)相互独立, 则其中任意k(1?k?n)个事件也相互独立;

由独立性定义可直接推出.

性质2 若n个事件A1,A2,?,An(n?2)相互独立, 则将A1,A2,?,An中任意m(1?m?n)个事件换成它们的对立事件, 所得的n个事件仍相互独立; 对n?2时,定理2已作证明, 一般情况可利用数学归纳法证之,此处略.

?性质3设A1,A2,?,An是n(n?2)个随机事件,则A1,A2,?,An相互独立 A1,A2,?,An两

??两独立。 即相互独立性是比两两独立性更强的性质,

四、伯努利概型

9

设随机试验只有两种可能的结果: 事件A发生(记为A) 或 事件A不发生(记为A), 则称这样的试验为伯努利(Bermourlli)试验. 设P(A)?p,P(A)?1?p,(0?p?1),将伯努利试验

独立地重复进行n次, 称这一串重复的独立试验为n重伯努利试验, 或简称为伯努利概型. 注: n重伯努利试验是一种很重要的数学模型, 在实际问题中具有广泛的应用.其特点是:事件A在每次试验中发生的概率均为p,且不受其他各次试验中A是否发生的影响.

定理3(伯努利定理) 设在一次试验中,事件A发生的概率为p(0?p?1),则在n重贝努里试

kkp(1?p)n?k,(k?0,1,?,n). 验中,事件A恰好发生k次的概率为P{X?k}?Cn推论 设在一次试验中,事件A发生的概率为p(0?p?1), 则在n重贝努里试验中, 事件A在第k次试验中的才首次发生的概率为p(1?p)k?1,(k?0,1,?,n).

注意到“事件A第k次试验才首次发

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@)