2016年各地中考数学解析版试卷分类汇编:图形的相似与位似

最大最全最精的教育资源网 www.xsjjyw.com

【分析】根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;

(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.

【解答】解:(1)∵四边形ABCD是菱形, ∴AB∥CD,AD=CD,∠ADB=∠CDB, ∴∠F∠FCD, 在△ADG与△CDG中,∴△ADG≌△CDG, ∴∠EAG=∠DCG, ∴AG=CG;

(2)∵△ADG≌△CDG, ∴∠EAG=∠F, ∵∠AGE=∠AGE, ∴△AEG∽△FGA, ∴

∴AG2=GE?GF.

【点评】本题考查了相似三角形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.www.21-cn-jy.com

2. (2016·湖北黄冈)(满分8分) 如图,AB是半圆O的直径,点P是BA延长线上一

点,PC是⊙O的切线,切点为C. 过点B作BD⊥PC交PC的延长线于点D,连接BC. 求证: (1)∠PBC =∠CBD; (2)BC=AB·BD D C

2

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

P A O B

【考点】切线的性质,相似三角形的判定和性质.

【分析】(1)连接OC,运用切线的性质,可得出∠OCD=90°,从而证明OC∥BD,得到∠CBD=∠OCB,再根据半径相等得出∠OCB=∠PBC,等量代换得到∠PBC =∠CBD.

(2)连接AC. 要得到BC=AB·BD,需证明△ABC∽△CBD,故从证明∠ACB=∠BDC,

∠PBC=∠CBD入手.

【解答】证明:(1)连接OC, ∵PC是⊙O的切线,

∴∠OCD=90°. ……………………………………………1分 又∵BD⊥PC

∴∠BDP=90° ∴OC∥BD. ∴∠CBD=∠OCB. ∴OB=OC . ∴∠OCB=∠PBC.

∴∠PBC=∠CBD. ………………………………………..4分

D

C

P A O B

(2)连接AC. ∵AB是直径,

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

2

(第2题)

最大最全最精的教育资源网 www.xsjjyw.com

∴∠BDP=90°. 又∵∠BDC=90°, ∴∠ACB=∠BDC. ∵∠PBC=∠CBD,

∴△ABC∽△CBD. ……………………………………6分

BCAB∴BC=BD.

∴BC=AB·BD. ………………………….……………8分

D

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@)