P{0?x<}=F()?F(0)=
222??1?1121??(3)F?=??x??=1?F()=1????4?4242222
15、设随机变量X的概率密度为
?Ae?2x f?x????0x?0x?0
试求(1)常数A;(2)P{X>0.5};(3)P{X>1/X<2}
解:(1)根据规范性?+?-?f(x)dx?10?????0Ae-2xdx????0dx?1?12Ae?2x|0?1A?2(2)f(x)={P{X>0.5}=2e0-2x x?0x<0???0.52e-2xdx??e?2x|0.5?e=???1(3)P{X>1|X<2}=P{1
17、设连续型随机变量X的分布函数为
(1) 求P{X≤1},P{-1≤X<2}(2)求概率密度f(x)
解:(1)P{X≤1}=F(1)= 1/2+1/4=3/4
P{-1≤X<2}=F(2)-F(1)=1/2+2/4-1/2e-1=1-1/2e-1
(2)如下:
18、
19、设X~N(0,1) (1)求
P?X?0?,P?X??1.25?,P?X?0.68?;
(2)求?,使它满足P?X>??=0.05;
(3)
求?,使它满足P?2X????13
解:(1)P?X=0?=0
P?X??1.25??1??(1.25)=1-0.8944=0.1056 P?X(2)当?>0.68?=P?X>0.68或X<-0.68??1??(0.68)?1??(0.68)?0.4966?0时,P?X>???1??(?)=0.05 ??(?)?0.95 ??1.64
当??0时,P?X>??=1-(1-?(-?))=0.05 ?(-?)=0.05
即?(?)=0.95得??1.64(与前提不符) 所以??1.64
(3)当?>0时P?2X???1?????P?X????()?2?23?
????0.86(与条件不符)
????1??当?<0时,P?2X????P?X??=1-P?-???=2?2?3?? ??(-?2)=23
得???0.86
所以???0.8620、设X~N(-1,42),求
(1)P?X?2.56?;(2)P?X<1.72?;(3)P?X+1<4?;(4)P?X-1>1?
解:(1)由?????1,42?,得X+14???0,1?
?X+12.56+1?P?X?2.56?=P???=1-?(0.89)=1-0.8133=0.186744??(2)P?X?1.72?????X?14?-5+1?4?1.72?1????(0.68)?0.75174?X+14
(3)P?X+1<4?=P?<<3+1??=?(1)-?(-1)=2?(1)-1=0.68264?X+14(4)P?X-1>1?=?X>2或X<0?=??X+1?4>2+14或<1?31?=1-?()+?()=0.8253 4?4423、某校抽样调查表明,该校考生外语成绩(百分制)服从正态分布N(72,? ),已知96分以上的占考生总数的2.3%,求考生的外语成绩在60分到84分之间的概率。
解:因为X~N(72, ?2 )
所以
X-722
?~N(0,1)
?X-72???96?72????X=P????72?24????由题意得 P{X?96}=P??
24??24? =??=1-??????
?????? =0.023
24? 所以????=0.977
???24 查表得 所以
12?=2.00
?=1.00
X?7284?72??60?72X?84??P?????????12???1 ??? 因为P?60?
=2??? =2?0.8413-1 =0.6826
习题2.5(P48)
24、设随机变量X 分布为
X P -2 -1 0 1 2 0.1 0.3 0.3 0.2 0.1 2试分别求Y=2X+3和Z=X的概率分布。