【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;
(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;
②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形. 【解答】(1)证明:连接OC,如图, ∵CE为切线, ∴OC⊥CE,
∴∠OCE=90°,即∠1+∠4=90°, ∵DO⊥AB, ∴∠3+∠B=90°, 而∠2=∠3, ∴∠2+∠B=90°, 而OB=OC, ∴∠4=∠B, ∴∠1=∠2, ∴CE=FE;
(2)解:①当∠D=30°时,∠DAO=60°, 而AB为直径, ∴∠ACB=90°,
∴∠B=30°, ∴∠3=∠2=60°, 而CE=FE,
∴△CEF为等边三角形, ∴CE=CF=EF, 同理可得∠GFE=60°, 利用对称得FG=FC, ∵FG=EF,
∴△FEG为等边三角形, ∴EG=FG, ∴EF=FG=GE=CE, ∴四边形ECFG为菱形;
②当∠D=22.5°时,∠DAO=67.5°, 而OA=OC,
∴∠OCA=∠OAC=67.5°,
∴∠AOC=180°﹣67.5°﹣67.5°=45°, ∴∠AOC=45°, ∴∠COE=45°,
利用对称得∠EOG=45°, ∴∠COG=90°, 易得△OEC≌△OEG, ∴∠OEG=∠OCE=90°, ∴四边形ECOG为矩形, 而OC=OG,
∴四边形ECOG为正方形. 故答案为30°,22.5°.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.
20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.
如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长. 【解答】解:在Rt△ACE中,
∵tan∠CAE=∴AE=
, =
≈
≈21(cm)
在Rt△DBF中, ∵tan∠DBF=∴BF=
, =
≈
=40(cm)
∵EF=EA+AB+BF≈21+90+40=151(cm) ∵CE⊥EF,CH⊥DF,DF⊥EF ∴四边形CEFH是矩形, ∴CH=EF=151cm
答:高、低杠间的水平距离CH的长为151cm.
【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.
21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x(元) 日销售量y(个) 日销售利润w(元)
85 175 875
95 125 1875
105 75 1875
115 m 875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空:
该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是 2000 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.