二、选择题
1、直线相关系数的绝对值接近于1时,说明两个变量关系的密切程度是(C ) A、完全相关 B、微弱相关 C、高度相关 D、显著相关 *2、相关系数r的取值范围是( B)
A、0≤r≤1 B、-1≤r≤1 C、-1<r <1 *3、当所有观察值都落在回归直线Yc=a+bX上,则变量X和Y之间相关系数( C ) A、r=0 B、r=1 C、 r=±1 *4、根据直线回归方程Yc=a+bX,相关系数与回归系数的关系可以表述为(A )
A、r=b·(δx/δy) B、r=b·(δy/δx) C、 r=b·(δx/syx)
5、年劳动生产率X(千元)和工人工资Y(元)之间的回归方程为Yc=10+70X,这意味着劳动率每提高1000元时,工人工资平均(A )
A、增加70元 B、减少70元 C 、增加80元 6、下列各回归方程中,哪个是错的(C )
A、Yc=-40+1.6X, r=0.89 B、 Yc=-5-3.8X r=-0.94 C、Yc=36-2.4X r=0.96 *7、已知y=76 x=6 ∑(x-x)2=62.5 ∑(x-x)(y-y)=500,则回归直线方程为(A ) A、Yc=28+8X B、Yc=-303.74+63.29 C、Yc=8+28X △8、公式Syx= ∑(y-yc)/n-2称为(C)
A、标准差 B、剩余方差 C、估计标准误差 *9、用最小平方法配合的趋势线,必须满足的一个基本条件是( A )。 A、∑(y-yc)2=最小值 B、∑(y-yc)=最小值 C、∑(y-yc)2=最大值 D、∑(y-yc)=最大值 三、判断
1、相关关系和函数关系都属于完全确定性的依存关系。 ( X ) 2、如果两个变量之间的变化方向一致,都是增长趋势或下降趋势,则二者是一种正相关关系。 ( √ )
3、相关关系数r的符号反映相关关系的方向, 其绝对值的大小反映相关的密切程度。 ( √ )
4、当直线相关系数r=0时,则说明变量之间不存在的直线相关关系。 ( √ ) 5、相关系数r有正负且有大小,因而该指标反映的是两变量之间具体的数量变动关系。 ( X ) 6、回归系数b的符号相关系数r的符号可以相同,也可以不同。 ( X ) 7、在直线回归分析中,两个变量是不对等的,不需要区分因变量和自变量。(X) △8、回归分析中计算的估计标准误差就是因变量的标准差。 ( √ ) 9、相关系数r越小,则估计标准误差Syx越大, 从而直线回归方程的精确性越
低( √ )
△10、直线回归分析中根据回归方程, 用因变量数值去推算自变量的估计值。( X ) 四、计算题
1、假定某企业某产品与单位成本的资料如下:
月份 1 2 3 4 5 6 产量(千件) 2 3 4 3 4 5 单位成本(元/件) 73 72 71 73 69 68 设产量与单位成本在一定条件下符合直线相关,试用简捷计算公式计算相关数,并分析现象之间的相关性质。 解:设产量为x.单位成本为Y
?x?21 ?Y?426 ?xY?1481 ?x所以r=
2?79Y ?2?30268 =0.909
(n?xY??x?Y)/(n?x2?(?x)2*n?Y2?(?Y)2)?0.909<1,所以产量与单位成本之间呈高度相关关系。
-
由于0.8<
2、设某地高校教育经费(X)与高等学校学生人数(Y)连续六年的统计资料如下: 教育经费(x)万元 在校人数(y)万人 316 11 343 16 373 18 393 20 418 22 455 25 据以上资料求:相关系数 观察
解:1、r=σxy2/(σx*σy)=1213/112.69/10.92=0.9857 2、b=σxy2/σx2 =1213/12698=0.0955
3、a=18.666-0.0955*383=-17.91 Yc=-17.91+0.0955*X
察值x的标准差
回归系数 估计标准误差
*3、存款X=165,Y=124,δx=5万元与δy=4万元,存款放款增加额两现象的相关系数r=0.8,试求放款Y与存款X的增加额的直线回归方程及估计标准误差。
______解:r=σ
______2xy/(σx*σy)=0.8 b=σ
2xy/σx2=r*(
?x?y)=0.8*4/5=0.64
a=y-bx=124-0.64*165=18.4
所以Yc=a+bX=18.4+0.64X
*4、试根据下列资料编制直线回归方程Yc=a+bX,并计算相关系数: xy=146.5 x=12.6 y=11.3 x2=164.2 y2=134.1 a=1.7575
解:σ
2
2xy
=XY-X*Y=146.5-12.6*11.3=4.12
______________22(X)σx=X-=164.2-12.6=5.44
___2?2y=Y___2-
(Y)2=134.1-11.32=6.41
___4.122
所以相关系数r=σxy/(σx*σy)=5.44*6.41=0.6989
2(X)XYXYXb=σxy/σx=(-*)/-=0.7574
2
2
______________2___a=y-bx=11.3-0.7574*12.6=1.757
______所以Yc=a+bX=1.757+0.7574X
*5、试根据下列资料编制直线回归方程。
δx= 25 δy=36 r=0.9 a=2.8
解:b=σxy2/σx2=r*(
所以直线回归方程为:
Y=2.8+1.08X
??x?y)=(0.9*6)/5=1.08
XYX6.有数据,n=7, ?=1890,?=31.3,?解:
2Y=535500,?2=174.15,
?XY=9318,
要求:根据上述数据,试确定Y倚X的简单直线回归方程,并计算相关系数。
r?n?XY??X*?Yn?X2?(?X)2n?Y?(?Y)22
7*9318?1890*31.3=
7*535500?189027*174.13?31.32
=0.934
(X?X)(Y?Y)n?XY??X*?Y7*9318?1890*31.3?b????0.0344n?X?(?X)7*535500?1890?(X?X)
___2222______a??Y?b?X?31.3?0.0344*1890??4.82nn77
?所以简单直线回归方程为: Y=
-4.82+0.0344X
由于时间仓促,如有错误请及时联系!!!