Êý ѧ
Bµ¥Ôª º¯ÊýÓëµ¼Êý B1 º¯Êý¼°Æä±íʾ
5£®B1 º¯Êýy£½3£2x£xµÄ¶¨ÒåÓòÊÇ________£®
5£® Áî3£2x£x¡Ý0¿ÉµÃx£«2x£3¡Ü0£¬½âµÃ£3¡Üx¡Ü1£¬¹ÊËùÇóº¯ÊýµÄ¶¨ÒåÓòΪ£® 11£®B1¡¢B4 Éèf(x)ÊǶ¨ÒåÔÚRÉÏÇÒÖÜÆÚΪ2µÄº¯Êý£¬ÔÚÇø¼ä ÒòΪf(x)µÄÖÜÆÚΪ2£¬511911ËùÒÔf(£)£½f(£)£½££«a£¬f()£½f()£½£¬
2222210
1132¼´££«a£½£¬ËùÒÔa£½£¬¹Êf(5a)£½f(3)£½f(£1)£½£. 21055B2 ·´º¯Êý
5£®B2 ÒÑÖªµã(3£¬9)ÔÚº¯Êýf(x)£½1£«aµÄͼÏñÉÏ£¬Ôòf(x)µÄ·´º¯Êýf(x)£½________£® 5£®log2(x£1)£¬x¡Ê(1£¬£«¡Þ) ½«µã(3£¬9)µÄ×ø±ê´úÈ뺯Êýf(x)µÄ½âÎöʽµÃa£½2£¬ËùÒÔf(x)£½1£«2£¬ËùÒÔf(x)£½log2(x£1)£¬x¡Ê(1£¬£«¡Þ)£®
B3 º¯ÊýµÄµ¥µ÷ÐÔÓë×îÖµ
??x£3x£¬x¡Üa£¬14£®B3£¬B12 É躯Êýf(x)£½?
?£2x£¬x>a.?
3
2
22
x£1
x£1
¢ÙÈôa£½0£¬Ôòf(x)µÄ×î´óֵΪ________£»
¢ÚÈôf(x)ÎÞ×î´óÖµ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ________£®
14£®¢Ù2 ¢Ú(£¡Þ£¬£1) ÓÉ(x£3x)¡ä£½3x£3£½0£¬µÃx£½¡À1£¬×÷³öº¯Êýy£½x£3xºÍy£½£2xµÄͼÏñ£¬ÈçͼËùʾ£®¢Ùµ±a£½0ʱ£¬ÓÉͼÏñ¿ÉµÃf(x)µÄ×î´óֵΪf(£1)£½2.¢ÚÓÉͼÏñ¿ÉÖªµ±a¡Ý£1ʱ£¬º¯Êýf(x)ÓÐ×î´óÖµ£»µ±a<£1ʱ£¬y£½£2xÔÚx>aʱÎÞ×î´óÖµ£¬ÇÒ£2a>a£3a£¬ËùÒÔa<£1.
3
3
2
3
13£®B3¡¢B4 ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÔÚÇø¼ä(£¡Þ£¬0)Éϵ¥µ÷µÝÔö£®Èôʵ
ÊýaÂú×ãf(2
|a£1|
)>f(£2)£¬ÔòaµÄȡֵ·¶Î§ÊÇ________£®
13
13.£¨£¬£© ÓÉf(x)ÊÇżº¯Êý£¬ÇÒf(x)ÔÚÇø¼ä(£¡Þ£¬0)Éϵ¥µ÷µÝÔö£¬µÃf(x)ÔÚÇø
22¼ä(0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£®
ÓÖf(2
|a£1|
)>f(£2)£¬f(£2)£½f(2)£¬¡à2
|a£1|
113
<2£¬¼´|a£1|<£¬¡à 222 18£®B3£¬B4 Éèf(x)£¬g(x)£¬h(x)ÊǶ¨ÒåÓòΪRµÄÈý¸öº¯Êý£¬¶ÔÓÚÃüÌ⣺¢ÙÈôf(x)£«g(x)£¬ f(x)£«h(x)£¬g(x)£«h(x)¾ùÊÇÔöº¯Êý£¬Ôòf(x)£¬g(x)£¬h(x)ÖÐÖÁÉÙÓÐÒ»¸öÔöº¯Êý£»¢ÚÈôf(x) £«g(x)£¬f(x)£«h(x)£¬g(x)£«h(x)¾ùÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬Ôòf(x)£¬g(x)£¬h(x)¾ùÊÇÒÔTΪÖÜÆÚµÄº¯Êý£®ÏÂÁÐÅжÏÕýÈ·µÄÊÇ( ) A£®¢ÙºÍ¢Ú¾ùÎªÕæÃüÌâ B£®¢ÙºÍ¢Ú¾ùΪ¼ÙÃüÌâ C£®¢ÙÎªÕæÃüÌ⣬¢ÚΪ¼ÙÃüÌâ D£®¢ÙΪ¼ÙÃüÌ⣬¢ÚÎªÕæÃüÌâ [f£¨x£©£«g£¨x£©]£«[f£¨x£©£«h£¨x£©]£[g£¨x£©£«h£¨x£©] 18£®D f(x)£½.¶ÔÓÚ¢Ù£¬ 2ÒòΪÔöº¯Êý¼õÔöº¯Êý²»Ò»¶¨ÎªÔöº¯Êý£¬ËùÒÔf(x)²»Ò»¶¨ÎªÔöº¯Êý£¬Í¬Àíg(x)£¬h(x)²»Ò»¶¨ÎªÔöº¯Êý£¬Òò´Ë¢ÙΪ¼ÙÃüÌ⣮¶ÔÓÚ¢Ú£¬Ò×µÃf(x)ÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬Í¬Àí¿ÉµÃg(x)£¬h(x)Ò²ÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬ËùÒÔ¢ÚÎªÕæÃüÌ⣮ B4 º¯ÊýµÄÆæÅ¼ÐÔÓëÖÜÆÚÐÔ 11£®B1¡¢B4 Éèf(x)ÊǶ¨ÒåÔÚRÉÏÇÒÖÜÆÚΪ2µÄº¯Êý£¬ÔÚÇø¼ä ÒòΪf(x)µÄÖÜÆÚΪ2£¬511911ËùÒÔf(£)£½f(£)£½££«a£¬f()£½f()£½£¬ 2222210 1132¼´££«a£½£¬ËùÒÔa£½£¬¹Êf(5a)£½f(3)£½f(£1)£½£. 21055 15£®B4¡¢B12 ÒÑÖªf(x)Ϊżº¯Êý£¬µ±x<0ʱ£¬f(x)£½ln(£x)£«3x£¬ÔòÇúÏßy£½f(x)ÔÚµã(1£¬£3)´¦µÄÇÐÏß·½³ÌÊÇ________£® 15£®y£½£2x£1 Éèx>0£¬Ôò£x<0.¡ßx<0ʱ£¬f(x)£½ln(£x)£«3x£¬¡àf(£x)£½ln x1 £3x£¬ÓÖ¡ßf(£x)£½f(x)£¬¡àµ±x>0ʱ£¬f(x)£½ln x£3x£¬¡àf¡ä(x)£½£3£¬¼´f¡ä(1)£½ x£2£¬¡àÇúÏßy£½f(x)ÔÚµã(1£¬£3)´¦µÄÇÐÏß·½³ÌΪy£«3£½£2(x£1)£¬ÕûÀíµÃy£½£2x£1. 14£®B4 ÒÑÖªº¯Êýf(x)ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚΪ2µÄÆæº¯Êý£¬µ±0£¼x£¼1ʱ£¬f(x)£½4£¬5 Ôòf££«f(1)£½________£® 2 x 14£®£2 ÒòΪf(x)ÊÇÖÜÆÚΪ2µÄº¯Êý£¬ËùÒÔf(x)£½f(x£«2)£® ÒòΪf(x)ÊÇÆæº¯Êý£¬ËùÒÔf(x)£½£f(£x)£¬ ËùÒÔf(1)£½f(£1)£¬f(1)£½£f(£1)£¬¼´f(1)£½0. ?5??1??1?11 ÓÖf?£?£½f?£?£½£f??£¬f£½4£½2£¬ ?2??2??2?22?5??5?ËùÒÔf?£?£½£2£¬´Ó¶øf?£?£«f(1)£½£2. ?2??2? 9£®B4 ÒÑÖªº¯Êýf(x)µÄ¶¨ÒåÓòΪR.µ±x<0ʱ£¬f(x)£½x£1£»µ±£1¡Üx¡Ü1ʱ£¬f(£x)111 £½£f(x)£»µ±x>ʱ£¬fx£«£½fx£.Ôòf(6)£½( ) 222 A£®£2 B£®£1 C£®0 D£®2 111 9£®D ¡ßµ±x>ʱ£¬f(x£«)£½f(x£)£¬¡àf(x)µÄÖÜÆÚΪ1£¬Ôòf(6)£½f(1)£® 222ÓÖ¡ßµ±£1¡Üx¡Ü1ʱ£¬f(£x)£½£f(x)£¬¡àf(1)£½£f(£1)£® ÓÖ¡ßµ±x<0ʱ£¬f(x)£½x£1£¬¡àf(£1)£½(£1)£1£½£2£¬¡àf(6)£½£f(£1)£½2. 13£®B3¡¢B4 ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÔÚÇø¼ä(£¡Þ£¬0)Éϵ¥µ÷µÝÔö£®ÈôʵÊýaÂú×ãf(2 |a£1| 3 3 3 )>f(£2)£¬ÔòaµÄȡֵ·¶Î§ÊÇ________£® 13 13.£¨£¬£© ÓÉf(x)ÊÇżº¯Êý£¬ÇÒf(x)ÔÚÇø¼ä(£¡Þ£¬0)Éϵ¥µ÷µÝÔö£¬µÃf(x)ÔÚÇø 22¼ä(0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£® ÓÖf(2 |a£1| )>f(£2)£¬f(£2)£½f(2)£¬¡à2 |a£1| 113 <2£¬¼´|a£1|<£¬¡à 222 18£®B3£¬B4 Éèf(x)£¬g(x)£¬h(x)ÊǶ¨ÒåÓòΪRµÄÈý¸öº¯Êý£¬¶ÔÓÚÃüÌ⣺¢ÙÈôf(x)£«g(x)£¬ f(x)£«h(x)£¬g(x)£«h(x)¾ùÊÇÔöº¯Êý£¬Ôòf(x)£¬g(x)£¬h(x)ÖÐÖÁÉÙÓÐÒ»¸öÔöº¯Êý£»¢ÚÈôf(x) £«g(x)£¬f(x)£«h(x)£¬g(x)£«h(x)¾ùÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬Ôòf(x)£¬g(x)£¬h(x)¾ùÊÇÒÔTΪÖÜÆÚµÄº¯Êý£®ÏÂÁÐÅжÏÕýÈ·µÄÊÇ( ) A£®¢ÙºÍ¢Ú¾ùÎªÕæÃüÌâ B£®¢ÙºÍ¢Ú¾ùΪ¼ÙÃüÌâ C£®¢ÙÎªÕæÃüÌ⣬¢ÚΪ¼ÙÃüÌâ D£®¢ÙΪ¼ÙÃüÌ⣬¢ÚÎªÕæÃüÌâ [f£¨x£©£«g£¨x£©]£«[f£¨x£©£«h£¨x£©]£[g£¨x£©£«h£¨x£©] 18£®D f(x)£½.¶ÔÓÚ¢Ù£¬ 2ÒòΪÔöº¯Êý¼õÔöº¯Êý²»Ò»¶¨ÎªÔöº¯Êý£¬ËùÒÔf(x)²»Ò»¶¨ÎªÔöº¯Êý£¬Í¬Àíg(x)£¬h(x)²»Ò»¶¨ ΪÔöº¯Êý£¬Òò´Ë¢ÙΪ¼ÙÃüÌ⣮¶ÔÓÚ¢Ú£¬Ò×µÃf(x)ÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬Í¬Àí¿ÉµÃg(x)£¬h(x)Ò²ÊÇÒÔTΪÖÜÆÚµÄº¯Êý£¬ËùÒÔ¢ÚÎªÕæÃüÌ⣮ B5 ¶þ´Îº¯Êý B6 Ö¸ÊýÓëÖ¸Êýº¯Êý 5£®E1£¬C3£¬B6£¬B7 ÒÑÖªx£¬y¡ÊR£¬ÇÒx>y>0£¬Ôò( ) 11 A.£>0 xyB£®sin x£sin y>0 1x1yC.£<0 22D£®ln x£«ln y>0 1111 5£®C Ñ¡ÏîAÖУ¬ÒòΪx>y>0£¬ËùÒÔ<£¬¼´£<0£¬¹Ê½áÂÛ²»³ÉÁ¢£»Ñ¡ÏîBÖУ¬µ±xxyxy5¦Ð¦Ð1x£½£¬y£½Ê±£¬sin x£sin y<0£¬¹Ê½áÂÛ²»³ÉÁ¢£»Ñ¡ÏîCÖУ¬º¯Êýy£½ÊǶ¨ÒåÔÚRÉϵÄ6321x1y1x1y£1£2 ¼õº¯Êý£¬ÒòΪx>y>0£¬ËùÒÔ<£¬ËùÒÔ£<0£»Ñ¡ÏîDÖУ¬µ±x£½e£¬y£½eʱ£¬½áÂÛ²» 2222³ÉÁ¢£® 19£®B6¡¢B9¡¢B12 ÒÑÖªº¯Êýf(x)£½a£«b(a>0£¬b>0£¬a¡Ù1£¬b¡Ù1)£® 1 (1)Éèa£½2£¬b£½. 2¢ÙÇó·½³Ìf(x)£½2µÄ¸ù£» ¢ÚÈô¶ÔÓÚÈÎÒâx¡ÊR£¬²»µÈʽf(2x)¡Ýmf(x)£6ºã³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£» (2)Èô01£¬º¯Êýg(x)£½f(x)£2ÓÐÇÒÖ»ÓÐ1¸öÁãµã£¬ÇóabµÄÖµ£® 1x£x19£®½â£º(1)ÒòΪa£½2£¬b£½£¬ËùÒÔf(x)£½2£«2. 2¢Ù·½³Ìf(x)£½2£¬¼´2£«2£½2£¬Ò༴(2)£2¡Á2£«1£½0£¬ ËùÒÔ(2£1)£½0£¬ÓÚÊÇ2£½1£¬½âµÃx£½0. ¢ÚÓÉÌõ¼þÖªf(2x)£½2£«2 2x£2xxxx£xx2xx2x£½(2£«2)£2£½£2. x£x22 ÒòΪf(2x)¡Ýmf(x)£6¶ÔÓÚx¡ÊRºã³ÉÁ¢£¬ÇÒf(x)>0£¬ [f£¨x£©]£«4 ËùÒÔm¡Ü¶ÔÓÚx¡ÊRºã³ÉÁ¢£® f£¨x£©[f£¨x£©]£«44¶ø£½f(x)£«¡Ý2 f£¨x£©f£¨x£©ËùÒÔm¡Ü4£¬¹ÊʵÊýmµÄ×î´óֵΪ4. (2)ÒòΪº¯Êýg(x)£½f(x)£2Ö»ÓÐ1¸öÁãµã£¬¶øg(0)£½f(0)£2£½a£«b£2£½0£¬ 0 0 2 2 4[f£¨0£©]£«4 f£¨x£©¡¤£½4£¬ÇÒ£½4£¬ f£¨x£©f£¨0£© 2