14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。② 2和任何奇数都是互质数。 ③ 相邻的两个自然数是互质数。④ 相邻的两个奇数互质。 ⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。 15、求最大公因数的方法:
① 倍数关系: 最大公因数就是较小数。 ② 互质关系: 最大公因数就是1
③ 一般关系: 从大到小看较小数的因数是否是较大数的因数。 16、分数知识图解:
分数的产生
分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份。
分数与除法 :分子(被除数),分母(除数),分数值(商)。 真分数 真分数小于1
真分数与假分数 假分数 假分数大于1或等于1
带分数 (整数部分和真分数)
假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,
分数的基本性质 分数的大小不变。
通分、通分子:化成分母不同,大小不变的分数(通分)
最大公因数
约 分 求最大公因数
最简分数 分子分母互质的分数(最简真分数、最简假分数) 约分及其方法 最小公倍数
通 分 求最小公倍数
分数比大小 (通分、通分子、化成小数) 通分及其方法
小数化分数 小数化成分母是10、100、1000的分数再化简
分数和小数的互化
分数化小数 分子除以分母,除不尽的取近似值
五 分数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减)
1、分数数的加法和减法 (2) 异分母分数加、减法 (通分后再加减)
(3) 分数加减混合运算:同整数。 (4) 结果要是最简分数
2、带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合
并起来。
附:具体解释
(一)同分母分数加、减法 1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。 2、计算的结果,能约分的要约成最简分数。 (二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。 2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 (三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。 3、
六 统计与数学广角
众数 一组数据中出现次数最多的数叫众数。 众数能够反映一组数据的集中情况。
11111111111?1- ?- ?- ?- 2262312342045
统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图
综合应用 打电话的最优方案
1、众数: 一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数:(1)按大小排列;
(2)如果数据的个数是单数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法:总数÷总份数=平均数 4、一组数据的一般水平:
(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。 (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。 (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。 4、平均数、中位数和众数的联系与区别:
① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。 容易受极端数据的影响,表示一组数据的平均情况。 ② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。 它不受极端数据的影响,表示一组数据的一般情况。 ③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。 它不受极端数据的影响,表示一组数据的集中情况。 5、统计图:我们学过——条形统计图、复式折线统计图。
条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。 注:① 画图时注意:一“点”(描点)、 二“连”(连线) 三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。
6、 打电话:规律——人人不闲着,每人都在传。(技巧:已知人数依次 × 2)
(1)逐个法:所需时间最多。
(2)分组法:相对节约时间。 (3)同时进行法:最节约时间。
七 数学广角
用天平找次品规律:
1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。
2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次 4~9个物体,保证能找出次品需要测的次数是2次 10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次
3、找次品规律
1 2 3 4 5 …次数
3 3×3 3×3×3 3×3×3×3 3×3×3×3×3 …
3 9 27 81 243 … 次品个数