k
3£®º¯Êýy£½Óëy£½kx£«1£¨k¡Ù0£©ÔÚÍ¬Ò»×ø±êϵÄÚµÄͼÏñ´óÖÂΪͼÖеģ¨ £©
x y y y y x x x x A B C D
4£®ÒÑÖªÒ»´Îº¯ÊýµÄͼÏñÊÇÒ»ÌõÖ±Ïߣ¬¸ÃÖ±Ïß¾¹ý(0,0)£¬(2,£a)£¬(a,£3)Èýµã£¬ÇÒº¯ÊýÖµËæ×Ô±äÁ¿xÖµµÄÔö´ó¶ø¼õС£¬Ôò´Ëº¯ÊýµÄ½âÎöʽ ¡£ 5£®Ò»´Îº¯Êýy£½2x£3ÔÚyÖáÉϵĽؾàÊÇ 1
6£®¶ÔÓÚº¯Êýy£½£ £¬µ±x>0ʱ£¬yËæxµÄÔö´ó¶ø
x
7£®Èç¹ûÖ±Ïßy£½2x£«m²»¾¹ýµÚ¶þÏóÏÞ£¬ÄÇôʵÊýmµÄȡֵ·¶Î§ÊÇ
£1
8£®ÈôË«ÇúÏßy£½£¨m£1£©xÔÚµÚ¶þ¡¢ËÄÏóÏÞ£¬ÔòmµÄȡֵ·¶Î§ÊÇ 3
9£®ÒÑÖªÖ±Ïßy£½ £ø£«£â±»Á½×ø±êÖá½ØÈ¡µÄÏ߶γ¤Îª5£¬Çó´ËÖ±Ïߺ¯Êý½âÎöʽ¡£
410£®ÒÑÖªÒ»´Îº¯Êýy£½£ëx£«2£â£«3µÄͼÏó¾¹ýµã£¨£1£¬£3£©£¬£ëÊÇ·½³Ì 2
£í£3£í£½10µÄÒ»¸ö¸ù£¬ÇÒYËæ£øµÄÔö´ó¶øÔö´ó£¬ÇóÕâ¸öÒ»´Îº¯Êý½âÎöʽ¡£ ¿¼µãѵÁ·£º
1£® y= x µÄͼÏóÊÇÒ»Ìõ¹ýԵ㼰µã(-3,32 )µÄÖ±Ïß
2£®Ò»´Îº¯Êýy=kx+b µÄͼÏó¾¹ýP(1,0) ºÍQ(0,1)Á½µã£¬Ôòk= ,b= . 2
3£®Õý±ÈÀýº¯ÊýµÄͼÏóÓëÖ±Ïßy= - x+4ƽÐУ¬Ôò¸ÃÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪ £¬
3¸ÃÕý±ÈÀýº¯Êýy ËæxµÄÔö´ó¶ø .
4£®ÒÑÖªy-2Óëx³ÉÕý±ÈÀý£¬ÇÒx=2ʱ,y=4,ÔòyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊÇ £¬Èôµã(m,2m+7), ÔÚÕâ¸öº¯ÊýµÄͼÏóÉÏ£¬Ôòm =
m2-5m-5
5£® º¯Êýy=(m-4)xµÄͼÏóÊǹýÒ»¡¢ÈýÏóÏÞµÄÒ»ÌõÖ±Ïߣ¬Ôò m =
k
6£®º¯Êýy= (k¡Ù0)µÄͼÏó¾¹ýµã(2 ,3),Ôòk= ,µ±x>0ʱ£¬yËæ×ÅxµÄÔö´ó¶ø
xk
7£®Èç¹ûÒ»´Îº¯Êýy=kx+bºÍ·´±ÈÀýº¯Êýy= µÄͼÏó¶¼¾¹ý(-2,1)µã£¬ÔòbµÄÖµÊÇ
x8£®ÒÑÖªÒ»´Îº¯Êýy=kx+bµÄyËæxµÄÔö´ó¶ø¼õС£¬ÄÇôËüµÄͼÏ󱨾¹ý ÏóÏÞ¡£ 9£®ÒÑÖªº¯Êýy= -2x-6¡££¨1£©Çóµ±x= -4ʱ£¬yµÄÖµ£¬µ±y= -2ʱ£¬x µÄÖµ¡£ £¨2£©»³öº¯ÊýͼÏó£»
£¨3£©Çó³öº¯ÊýͼÏóÓë×ø±êÖáµÄÁ½¸ö½»µãÖ®¼äµÄ¾àÀ룻 £¨4£©Èç¹ûy µÄȡֵ·¶Î§-4¡Üy¡Ü2,ÇóxµÄȡֵ·¶Î§. 10.ÒÑÖªzÓëy-3 ³ÉÕý±ÈÀý,xÓë
6
³É·´±ÈÀý£¬£¨1£©Ö¤Ã÷£ºyÊÇxµÄÒ»´Îº¯Êý£»(2)Èç¹ûz
Õâ¸öÒ»´Îº¯ÊýµÄͼÏó¾¹ýµã(-2,33 )£¬²¢ÇÒÓëx¡¢yÖá·Ö±ð½»ÓÚA¡¢BÁ½µã¡£ÇóÁ½ µãµÄ×ø±ê¡£
k2
£ª11£®ÒÑÖªº¯Êýy= µÄͼÏóÉÏÓÐÒ»µãP£¨£í£¬£î£©£¬ÇÒ£í£¬£î¹ØÓÚ£ôµÄ·½³Ì£ô£4£á£ô£«4
xk2
£á£6£á£8£½0µÄÁ½¸öʵÊý¸ù£¬ÆäÖУáÊÇʹ·½³ÌÓÐʵÊý¸ùµÄ×îСÕûÊý£¬Çóº¯Êýy= µÄ½âÎö
x
49
ʽ£¬ ½âÌâÖ¸µ¼
3
1.º¯Êýy= - xµÄͼÏóÊÇÒ»Ìõ¹ýÔµã(0,0)¼°µã(2, )µÄÖ±Ïߣ¬ÕâÌõÖ±Ïß¾¹ýµÚ
2 ÏóÏÞ£¬yËæµÄÔö´ó¶ø
1
2.ÒÑÖªÒ»´Îº¯Êýy= - x+2,µ±x= ʱ,y=0;µ±x ʱy>0; µ±x ʱy<0.
23.ÈôÒ»´Îº¯Êýy1=kx-bͼÏó¾¹ýµÚÒ»¡¢Èý¡¢ËÄÏóÏÞ£¬ÔòÒ»´Îº¯Êýy2=bx+kµÄͼÏó¾¹ýµÚ ÏóÏÞ¡£
4.Ö±Ïßy1=k1x+b1ºÍÖ±Ïßy2=k2x+b2ÏཻÓÚyÖáÉÏͬһµãµÄÌõ¼þÊÇ £»ÕâÁ½Ö±Ï߯½ÐеÄÌõ¼þÊÇ
5.¹ýµã£¨0£¬2£©ÇÒÓëÖ±Ïßy= - xƽÐеÄÖ±ÏßÊÇ ¡£
6.yÓë3x+2³ÉÕý±ÈÀý£¬±ÈÀýϵÊýÊÇ4£¬ÔòyÓëxµÄº¯Êý¹ØÏµÊ½ÊÇ ¡£
7.µÈÑüÈý½ÇÐεÄÖܳ¤Îª30cm£¬ËüµÄÑü³¤ÎªycmÓëµ×³¤xcmµÄº¯Êý¹ØÏµÊ½ÊÇ ¡£ 43-1
8.y= x µÄͼÏóÊÇÒ»Ìõ¹ýµã£¨ £¬- £©µÄË«ÇúÏߣ¬ÔÚËüµÄͼÏóËùÔÚµÄÿһ¸öÏóÏÞÄÚ£¬
54yËæxµÄÔö´ó¶ø ¡£
3
9.°ÑÖ±Ïßy= £ x -2ÏòÉÏÆ½ÒÆ2¸öµ¥Î»£¬µÃµ½Ö±Ïß £¬
233
°ÑÖ±Ïßy= - x -2Ïò Æ½ÒÆ ¸öµ¥Î»£¬µÃµ½Ö±Ïßy= - (x+4)
2210.д³öÂú×ãϱíµÄÒ»¸öÒ»´Îº¯ÊýµÄ¹ØÏµÊ½ x y - 1 7.5 2 6 5 4.5 11.Ö±Ïßy=kx+b¾¹ýµã£¨0£¬3£©,ÇÒÓëÁ½×ø±êÖá¹¹³ÉµÄÖ±½ÇÈý½ÇÐεÄÃæ»ýÊÇ6£¬ÇóÆä½âÎöʽ¡£ k
12£®ÒÑÖª·´±ÈÀýº¯Êýy= (k>0)µÄͼÏóÉϵÄÒ»µãP,Ëüµ½ÔµãOµÄ¾àÀëOP=25 ,PQ´¹Ö±ÓÚy
xÖá,´¹×ãΪQ.Èô¡÷OPQµÄÃæ»ýΪ4ƽ·½µ¥Î»£¬Ç󣺣¨1£©µãPµÄ×ø±ê£»£¨2£©Õâ¸ö·´±ÈÀýº¯ÊýµÄ½âÎöʽ.
¶ÀÁ¢ÑµÁ·£¨Ò»£©£º 2
1£®º¯Êýy= - ÊÇ º¯Êý£¬Õâ¸öº¯ÊýµÄͼÏóλÓÚµÚ ÏóÏÞ¡£
x5
2£®¶Ôº¯Êýy= - µ±x>0ʱ£¬yËæxµÄÔö´ó¶ø ¡£
3x
k2
3£®·´±ÈÀýº¯Êýy= µÄͼÏóÉÏÓÐÒ»µãP£¬ËüµÄºá×ø±êmÓë×Ý×ø±ênÊÇ·½³Ìt-4t-2=0µÄÁ½¸ö
x¸ù£¬Ôòk=
k
4£®Èçͼ£¬PΪ·´±ÈÀýº¯Êýy= µÄͼÏóÉϵĵ㣬¹ýP·Ö±ðÏò
xxÖáºÍyÖáÒý´¹Ïߣ¬ËüÃÇÓëÁ½Ìõ×ø±êÖáΧ³ÉµÄ¾ØÐÎÃæ»ýΪ2£¬ Õâ¸ö·´±ÈÀýº¯Êý½âÎöʽΪ ¡£ 5£®·´±ÈÀýº¯Êýy=(a-3)x
a2 -2a-4
µÄº¯ÊýÖµÊÇ4ʱ£¬ËüµÄ×Ô±äÁ¿xµÄÖµÊÇ ¡£
50
21
6£®Ò»´Îº¯Êýy=kx+bÓë·´±ÈÀýº¯Êýy= µÄͼÏóµÄÁ½¸ö½»µãµÄºá×ø±êΪ ºÍ -1£¬ÔòÒ»´Îº¯Êý
x2y=
1
7£®Ò»´Îº¯Êýy=kx+b¹ýµã£¨-2£¬5£©£¬ÇÒËüµÄͼÏóÓëyÖáµÄ½»µãºÍÖ±Ïßy=£ x+3ÓëyÖáµÄ
2½»µã¹ØÓÚxÖá¶Ô³Æ£¬ÄÇôһ´Îº¯ÊýµÄ½âÎöʽÊÇ 8£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬ÒÑÖªAB=23 £¬BD=6£¬¶Ô½ÇÏßAC ºÍBDÏཻÓÚO£¬ÒÔOΪԵã·Ö±ðÒÔÆ½ÐÐÓÚABºÍADµÄÖ±ÏßΪ ÖáºÍÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ôò¶Ô½ÇÏßACºÍBDµÄº¯ Êý±í´ïʽ·Ö±ðΪ ¡£
9£®ÇóÖ±Ïßy=3x+10,y= -2x-5ÓëyÖáËùΧ³ÉµÄÈý½ÇÐεÄÃæ»ý¡£ 10£®Èçͼ£¬Ò»´Îº¯Êýy=k1x+bµÄͼÏó¹ýÒ»¡¢Èý¡¢ËÄÏóÏÞ£¬ÇÒ k2
ÓëË«ÇúÏßy= µÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚCµã£¬ÇÒ
xA£¨x1£¬y1£©ÊÇ¡ÏXOAÖÕ±ßÉÏÒ»µã¡£
1
£¨1£© tg¡ÏXOA= £¬Ôµãµ½AµãµÄ¾àÀëΪ26 £¬ÇóAµãµÄ×ø±ê£»
5£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôS¡÷AOC=b£6£¬ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ¡£ ¶ÀÁ¢ÑµÁ·£¨¶þ£©£º 1
1. Èçͼ,A¡¢BÊǺ¯Êýy= µÄͼÏóÉϹØÓÚÔµãO¶Ô³ÆµÄÈÎÒâÁ½µã£¬AC
xƽÐÐÓÚyÖᣬBCƽÐÐÓÚxÖᣬ¡÷ABCµÄÃæ»ýS£¬Ôò£¨ £© £¨A£©S=1 £¨B£© 12
k2
2£®º¯Êýy=k1x+b(k1b<0)Óëy= (k2<0)ÔÚÍ¬Ò»×ø±êϵÖеÄͼÏó´óÖÂÊÇ£¨ £©
x
3£®Ôڱ߳¤Îª2 µÄÕý·½ÐÎABCDµÄ±ßBCÉÏ£¬ÓÐÒ»µãP´Ó BµãÔ˶¯µ½Cµã£¬ÉèPB=x£¬Í¼ÐÎAPCDµÄÃæ»ýΪy£¬ д³öyÓë×Ô±äÁ¿xµÄº¯Êý¹ØÏµÊ½£¬²¢ÇÒÔÚÖ±½Ç×ø±êϵ Öл³öËüµÄͼÏó
2
4.ÒÑÖªy=y1+y2,y1Óëx³ÉÕý±ÈÀý£¬y2Óëx³É·´±ÈÀý£¬²¢ÇÒµ±x=1ʱ,y=1,µ±x=3ʱ,y=-17,Çóx=-1ʱ,yµÄÖµ
8
5£®Èçͼ£¬ÔÚy= (x>0)·´±ÈÀýº¯ÊýµÄͼÏóÉÏÓв»ÖغϵÄÁ½µã
xA¡¢B£¬ÇÒAµãµÄ×Ý×ø±êÊÇ2£¬BµãµÄºá×ø±êΪ2£¬BB1ºÍAA1¶¼´¹Ö±ÓÚÖᣬ´¹×ã·Ö±ðΪB1ºÍA1£¬£¨1£©ÇóAµãºá×ø±ê£» £¨2£©ÇóS¡÷OBB1 £¨3£©µ±OB=25 ʱ£¬ÇóS¡÷OBA
CEF51 DOB
2
6£®ÈçͼÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬PÊÇBAÑÓ³¤ÏßÉÏÒ»µã£¬
PAMPCÇСÑOÓÚC£¬PA£½6£¬PEFÊÇ¡ÑOµÄ¸îÏߣ¬ÉèPE£½£ø£¬ PF£½y£¬ÏÒCM¡ÍABÓÚD£¬ÇÒAD£ºDB£½1£º2£¬ Çó£ùÓë£øÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬ ²¢Çó³ö×Ô±äÁ¿£øÈ¡Öµ·¶Î§¡£
µÚ15¿Î ¶þ´Îº¯Êý
¡¼ÖªÊ¶µã¡½¶þ´Îº¯Êý¡¢Å×ÎïÏߵĶ¥µã¡¢¶Ô³ÆÖáºÍ¿ª¿Ú·½Ïò ¡¼´ó¸ÙÒªÇó¡½
1£® Àí½â¶þ´Îº¯ÊýµÄ¸ÅÄ
2£® »á°Ñ¶þ´Îº¯ÊýµÄÒ»°ãʽ»¯Îª¶¥µãʽ£¬È·¶¨Í¼ÏóµÄ¶¥µã×ø±ê¡¢¶Ô³ÆÖáºÍ¿ª¿Ú·½Ïò£¬»á
ÓÃÃèµã·¨»¶þ´Îº¯ÊýµÄͼÏó£»
22
3£® »áÆ½ÒÆ¶þ´Îº¯Êýy£½ax(a¡Ù0)µÄͼÏóµÃµ½¶þ´Îº¯Êýy£½a(ax£«m)£«kµÄͼÏó£¬Á˽â
ÌØÊâÓëÒ»°ãÏ໥ÁªÏµºÍת»¯µÄ˼Ï룻 4£® »áÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£» 5£® ÀûÓöþ´Îº¯ÊýµÄͼÏó£¬Á˽â¶þ´Îº¯ÊýµÄÔö¼õÐÔ£¬»áÇó¶þ´Îº¯ÊýµÄͼÏóÓëxÖáµÄ½»µã
×ø±êºÍº¯ÊýµÄ×î´óÖµ¡¢×îСֵ£¬Á˽â¶þ´Îº¯ÊýÓëÒ»Ôª¶þ´Î·½³ÌºÍ²»µÈʽ֮¼äµÄÁªÏµ¡£
ÄÚÈÝ
£¨1£©¶þ´Îº¯Êý¼°ÆäͼÏó
2
Èç¹ûy=ax+bx+c(a,b,cÊdz£Êý£¬a¡Ù0),ÄÇô£¬y½Ð×öxµÄ¶þ´Îº¯Êý¡£ ¶þ´Îº¯ÊýµÄͼÏóÊÇÅ×ÎïÏߣ¬¿ÉÓÃÃèµã·¨»³ö¶þ´Îº¯ÊýµÄͼÏó¡£ £¨2£©Å×ÎïÏߵĶ¥µã¡¢¶Ô³ÆÖáºÍ¿ª¿Ú·½Ïò
b4ac?b2b,)£¬Å×ÎïÏßy=ax+bx+c(a¡Ù0)µÄ¶¥µãÊÇ(?¶Ô³ÆÖáÊÇx??£¬µ±a>0ʱ£¬2a4a2a2
Å×ÎïÏß¿ª¿ÚÏòÉÏ£¬µ±a<0ʱ£¬Å×ÎïÏß¿ª¿ÚÏòÏ¡£
Å×ÎïÏßy=a£¨x+h£©2+k(a¡Ù0)µÄ¶¥µãÊÇ£¨-h£¬k£©£¬¶Ô³ÆÖáÊÇx=-h. ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
1£® ¿¼²é¶þ´Îº¯ÊýµÄ¶¨Òå¡¢ÐÔÖÊ£¬ÓйØÊÔÌâ³£³öÏÖÔÚÑ¡ÔñÌâÖУ¬È磺
22
ÒÑÖªÒÔxΪ×Ô±äÁ¿µÄ¶þ´Îº¯Êýy£½(m£2)x£«m£m£2¶îͼÏñ¾¹ýԵ㣬 ÔòmµÄÖµÊÇ
2£® ×ۺϿ¼²éÕý±ÈÀý¡¢·´±ÈÀý¡¢Ò»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄͼÏñ£¬Ï°ÌâµÄÌØµãÊÇÔÚͬһֱ½Ç
×ø±êϵÄÚ¿¼²éÁ½¸öº¯ÊýµÄͼÏñ£¬ÊÔÌâÀàÐÍΪѡÔñÌ⣬È磺
Èçͼ£¬Èç¹ûº¯Êýy£½kx£«bµÄͼÏñÔÚµÚÒ»¡¢¶þ¡¢ÈýÏóÏÞÄÚ£¬ÄÇôº¯Êý
2
y£½kx£«bx£1µÄͼÏñ´óÖÂÊÇ£¨ £©
y y y y 1 1 0 x o-1 x 0 x 0 -1 x A B C D 3£® ¿¼²éÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬ÓйØÏ°Ìâ³öÏֵįµÂʺܸߣ¬Ï°ÌâÀàÐÍÓÐÖÐ
µµ½â´ðÌâºÍÑ¡°ÎÐÔµÄ×ÛºÏÌ⣬È磺
52