故选:B.
【点评】本题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.
6.(4分)已知一组数据5,8,8,9,10,以下说法错误的是( ) A.平均数是8
B.众数是8
C.中位数是8
D.方差是8
【分析】分别计算平均数,众数,中位数,方差后判断. 【解答】解:由平均数的公式得平均数=(5+8+8+9+10)÷5=8, 方差=[(5﹣8)+(8﹣8)+(8﹣8)+(9﹣8)+(10﹣8)]=2.8,
将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8, 5个数中8出现了两次,次数最多,即众数为8, 故选:D.
【点评】此题考查了学生对平均数,众数,中位数,方差的理解.只有熟练掌握它们的定义,做题时才能运用自如.
7.(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( ) A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
2
2
2
2
2
2
2
【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC+BC=AB,即可得出△ABC是直角三角形.
【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5, ∴AC+BC=AB,
∴△ABC是直角三角形,且∠ACB=90°, 故选:B.
2
2
2
2
【点评】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a+b=
9
2
2
c2,那么这个三角形就是直角三角形.
8.(4分)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为( )
A.asinα+asinβ C.atanα+atanβ
B.acosα+acosβ D.
+
【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=atanα,BD=atanβ,得出CD=BC+BD=atanα+atanβ即可.
【解答】解:在Rt△ABD和Rt△ABC中,AB=a,tanα=∴BC=atanα,BD=atanβ, ∴CD=BC+BD=atanα+atanβ; 故选:C.
【点评】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD是解题的关键.
9.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )
,tanβ=
,
A.PA=PB
B.∠BPD=∠APD
C.AB⊥PD
D.AB平分PD
【分析】先根据切线长定理得到PA=PB,∠APD=∠BPD;再根据等腰三角形的性质得OP⊥AB,根据菱形的性质,只有当AD∥PB,BD∥PA时,AB平分PD,由此可判断D不一定
10
成立.
【解答】解:∵PA,PB是⊙O的切线, ∴PA=PB,所以A成立; ∠BPD=∠APD,所以B成立; ∴AB⊥PD,所以C成立; ∵PA,PB是⊙O的切线, ∴AB⊥PD,且AC=BC,
只有当AD∥PB,BD∥PA时,AB平分PD