【解答】解:原式=x2﹣1+4x2﹣4x+1﹣4x2+2x =x2﹣2x, 把x=原式=(=3+2=1.
+1代入,得: +1)2﹣2(﹣2
+1)
﹣2
2018中考数学试题分类汇编:考点5 因式分解
一.选择题(共3小题)
1.(2018?济宁)多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2 【分析】首先提取公因式a,再利用平方差公式分解因式得出答案. 【解答】解:4a﹣a3 =a(4﹣a2)
=a(2﹣a)(2+a). 故选:B.
2.(2018?邵阳)将多项式x﹣x3因式分解正确的是( )
A.x(x2﹣1) B.x(1﹣x2) C.x(x+1)(x﹣1) D.x(1+x)(1﹣x) 【分析】直接提取公因式x,再利用平方差公式分解因式得出答案. 【解答】解:x﹣x3=x(1﹣x2) =x(1﹣x)(1+x). 故选:D.
3.(2018?安徽)下列分解因式正确的是( ) A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)
C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2) 【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.
【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误; B、x2+xy+x=x(x+y+1),故此选项错误;
C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确; D、x2﹣4x+4=(x﹣2)2,故此选项错误; 故选:C.
二.填空题(共21小题)
4.(2018?温州)分解因式:a2﹣5a= a(a﹣5) . 【分析】提取公因式a进行分解即可. 【解答】解:a2﹣5a=a(a﹣5). 故答案是:a(a﹣5).
5.(2018?徐州)因式分解:2x2﹣8= 2(x+2)(x﹣2) . 【分析】观察原式,找到公因式2,提出即可得出答案. 【解答】解:2x2﹣8=2(x+2)(x﹣2).
6.(2018?怀化)因式分解:ab+ac= a(b+c) . 【分析】直接找出公因式进而提取得出答案. 【解答】解:ab+ac=a(b+c). 故答案为:a(b+c).
7.(2018?潍坊)因式分解:(x+2)x﹣x﹣2= (x+2)(x﹣1) . 【分析】通过提取公因式(x+2)进行因式分解. 【解答】解:原式=(x+2)(x﹣1). 故答案是:(x+2)(x﹣1).
8.(2018?吉林)若a+b=4,ab=1,则a2b+ab2= 4 .
【分析】直接利用提取公因式法分解因式,再把已知代入求出答案. 【解答】解:∵a+b=4,ab=1,
∴a2b+ab2=ab(a+b) =1×4 =4.
故答案为:4.
9.(2018?嘉兴)分解因式:m2﹣3m= m(m﹣3) . 【分析】首先确定公因式m,直接提取公因式m分解因式. 【解答】解:m2﹣3m=m(m﹣3). 故答案为:m(m﹣3).
10.(2018?杭州)因式分解:(a﹣b)2﹣(b﹣a)= (a﹣b)(a+b+1) .
【分析】原式变形后,提取公因式即可得到结果.
【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1), 故答案为:(a﹣b)(a﹣b+1)
11.(2018?湘潭)因式分解:a2﹣2ab+b2= (a﹣b)2 . 【分析】根据完全平方公式即可求出答案. 【解答】解:原式=(a﹣b)2 故答案为:(a﹣b)2
12.a2= (a﹣b)(2018?株洲)因式分解:(a﹣b)﹣4(a﹣b)(a﹣2)(a+2) . 【分析】先提公因式,再利用平方差公式因式分解即可. 【解答】解:a2(a﹣b)﹣4(a﹣b) =(a﹣b)(a2﹣4)
=(a﹣b)(a﹣2)(a+2),
故答案为:(a﹣b)(a﹣2)(a+2).
13.(2018?张家界)因式分解:a2+2a+1= (a+1)2 . 【分析】直接利用完全平方公式分解因式得出答案.
【解答】解:a2+2a+1=(a+1)2. 故答案为:(a+1)2.
14.(2018?广东)分解因式:x2﹣2x+1= (x﹣1)2 . 【分析】直接利用完全平方公式分解因式即可. 【解答】解:x2﹣2x+1=(x﹣1)2.
15.(2018?云南)分解因式:x2﹣4= (x+2)(x﹣2) . 【分析】直接利用平方差公式进行因式分解即可. 【解答】解:x2﹣4=(x+2)(x﹣2). 故答案为:(x+2)(x﹣2).
16.(2018?苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为 12 .
【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值. 【解答】解:∵a+b=4,a﹣b=1, ∴(a+1)2﹣(b﹣1)2 =(a+1+b﹣1)(a+1﹣b+1) =(a+b)(a﹣b+2) =4×(1+2) =12.
故答案是:12.
17.(2018?连云港)分解因式:16﹣x2= (4+x)(4﹣x) .
【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可. 【解答】解:16﹣x2=(4+x)(4﹣x).
18.(2018?河北)若a,b互为相反数,则a2﹣b2= 0 .
【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.