×éºÏ×ÔÓɱíÃæÌõ¼þ £º
º£µ×±ß½çÌõ¼þ£º
???2???0?zg???0whenz???fordeepwater???0atz??d(seabed)forshallowwater?z·øÉäÌõ¼þ£º·øÉäÌõ¼þÊÇÒ»ÖÖÎïÀí״̬£¬Ê¹²¨²»»áÔÚ´íÎóµÄ·½ÏòÉÏ´«µÝ£¬ÈçË®´©Í¸´¬Ì壬
´Ó¶ø±ÜÃâÊýÉϵIJ»È·¶¨ÐÔ¡£ÆäÊýÖµ·½·¨£ºÊÆÄÜÏîµÄÏßÐÔµþ¼Ó
???e?i?t?[(?I??d)???j.xj]e?i?tj?16 ʽÖУºÏ±êIÊÇÈëÉ䲨£¬dÊÇÑÜÉ䲨, j=1,2,¡,6 ÊÇ6¸ö×ÔÓɶȵķøÉ䲨£¬x
Êǵ¥Î»²¨·ùϽṹµÄÔ˶¯. ¶ÔÓÚÓÐÏÞË®Éîd£¬ÈëÉ䲨µÄÊÆÄÜΪ
?ig?cosh[k(z?d)]eik(xcos??ysin???)e?i?t?Ie??cosh(kd)ʽÖÐkÊDz¨Êý£¬¶¨ÒåΪ:
?i?t
?2?gktanh(kd)ʹÓÃÂö³åÔ´·Ö²¼£¨pulsating source distribution£©Çó½âÑÜÉäºÍ·øÉä²¨ÊÆÄÜ
1?(x,y,z)?4????G(x,y,z;?,?,?)dssʽÖУº§Ò ÊÇ·øÉäÌåÇ¿¶È£¨ source strength£©; S ÊÇÈëË®½á¹¹Ãæ; (x,y,z) ΪÁ÷ÓòÖÐÓòµãµÄ×ø±ê; (¦Æ, ¦Ç, ? ) ÊÇSÉÏÔ´µã×ø±ê;G Ϊ¸ñÁÖº¯Êý£¬ÊÇÇó½âLaplace·½³ÌµÄ»ù´¡£¬²¢ÇÒÂú×ãËùÓб߽çÌõ¼þ£¨³ýÁËÌå±ß½çÌõ¼þ£©. G ¿ÉÒÔ±í´ïΪ:
11(???)e??dG(x,y,z;?,?,?)??'?2pv?cosh?(??d)cosh?(z?d)J0(?r)d?RR?sinh(?d)??cosh(?d)0
22)(k???2?i 2coshk(z?d)coshk(??d)J0(kr)2(k??)d???
ʽÖУº
???2/g?ktanh(kd)R?(x??)2?(y??)2?(z??)2R'?(x??)2?(y??)2?(z?2d??)2r?(x??)2?(y??)2
pv ±íʾ»ý·ÖµÄprincipal value; J0 ÊÇBesselº¯ÊýµÄµÚÒ»Ïî
ÔÚÿ¸ö°å¸ñ½á¹¹±íÃæÉϵÄÔ´Ç¿¶È£¨source strength£©¼ÙÉèΪ³£Êý£¬Í¨¹ýÌå±ß½çÌõ¼þÇó½â»ý·Ö·½³Ì¼ÆËã:
??(x,y,z)11???(x,y,z)??n24??G(x,y,z;?,?,?)?ds???ns ¶ÔÓÚÑÜÉäÊÆÄÜ£¬Ôڽṹ±íÃæÓÉÓÚÈëÉäÊÆÄܲúÉúµÄ·¨ÏòËÙ¶È»á±äΪÁ㣬¶øËù¼õÉٵķ¨Ïò
ËÙ¶È»áת»¯Îª½á¹¹Ô˶¯.
? ѹÁ¦ºÍµÚÒ»½×²¨ÀËÁ¦µÄ¼ÆËã
Ò»µ©¼ÆËãÁËÔ´µãÇ¿¶ÈºÍÊÆÄÜ£¬´ÓÏßÐÔ»¯µÄBernoulli·½³Ì£¨ÏßÐÔ²´Å¬Àû·½³Ì£©ÖпÉÒÔ¼ÆËãÿ¸ö°å¸ñµÄË®¶¯Á¦Ñ¹Á¦: µÚÒ»½×²¨ÀËÁ¦ÊÇͨ¹ýÔÚÌå±íÃæÉϽøÐлý·ÖµÃµ½µÄ
??p????t? ¶þ½×ƽ¾ùƯ¸¡Á¦¼ÆË㣺
³£ÓõĶþ½×ƽ¾ùÆ¯ÒÆÁ¦¼ÆËã·½·¨ÓÐÁ½ÀàÒ»ÀàÊÇ»ùÓÚ¶¯Á¿¡ªÄÜÁ¿ÊغãµÄÔ¶³¡»ý·Ö·¨£¬ÁíÒ»ÀàÊÇ»ùÓÚѹÁ¦»ý·ÖµÄ½ü³¡»ý·Ö·¨¡£Ç°ÕßÊǶԸ¡ÌåÖÜΧµÄÁ÷ÌåÓ¦Óö¯Á¿ºÍÄÜÁ¿Êغ㶨ÀíÍÆµ¼³ö¶þ½×Á¦£¬ºóÕßÊÇÀûÓÃÉ㶯չ¿ªµÃµ½¶þ½×Á÷ÌåѹÁ¦£¬È»ºó½«¶þ½×ѹÁ¦ÑØ×ÅÎïÌåʪ±íÃæ»ý·ÖÇó½â³ö¶þ½×Æ¯ÒÆÁ¦¡£
1£©Ô¶³¡Çó½â£¨Far field solution£© (¶¯Á¿Êغ㷽·¨£¬Ö»ÓÃÓÚˮƽÁ¦£©):ΪÁËʹ·½³ÌÔÚÎÞÇîÔ¶´¦Óн⣬ÐèÒªÒýÈëÒ»¸öÎÞÇîÔ¶µÄµØ·½µÄÔ¶³¡Ìõ¼þ£¬ÒÔ±£Ö¤ÎÞÏÞÔ¶´¦ÓÐÍâ´«²¨¡£Ñ¹Á¦ÒÔ¼°1½×²¨ÀËÁ¦µÄÇó½â£º½á¹¹ÉϵÄÿ¸öÃæÔªÇó½â²ÉÓÃÏßÐÔ²´Å¬Àû·½³Ì
(2)Fstrc??d?Vd????pndSdt????SR????????Vd?????VVndS???pndS?tSRSRʽÖÐ SR ÊÇÔÚÁ÷³¡½á¹¹ÖÜΧµÄ´¹Ö±Ô²Öù±ß½çÆä°ë¾¶ÎªR£¬ ? ÊÇSRµÄÁ÷ÌåÌå»ý£¬
The mean force is the time average of the above expression and the first order term becomes zero. The pressure includes the non-linear term in the Bernoulli equation and therefore will not disappear.
2£©½ü³¡Çó½â (ѹÁ¦¶ÔÓÚÁù¸ö×ÔÓɶȽøÐлý·Ö·½·¨):
(2)Fstrc???0.5?g?r2ndl???0.5???ndSWLS0..??????(X.?)ndS?Ms.R.Xg?tS02 ʽÖÐ WL ΪˮÏßλÖÃ; ¦Ær ÊÇÏà¹Ø²¨±íÃæ£¨relative wave surface elevation£©; S0 Ë®ÏÂ..½á¹¹±íÃæ;X ½á¹¹±íÃæµÄÔ˶¯; MS ½á¹¹µÄÖÊÁ¿;RÊǽṹµÄÐýת¾ØÕó; X g ÊǽṹÖÐÐļÓËÙ¶È.
? ¶þ´Î´«µÝº¯Êý£¨QTF£©
Components at both difference and sum frequencies¡£Each with real and imaginary parts
F
(2)(t)???Pij?cos???i??j?t???i??j??Pij?cos???i??j?t???i??j?i?1j?1NNNN?????????????Qijsin???i??j?t???i??j??Qijsin???i??j?t???i??j?i?1j?1????ÆäÖУº
Pij(?)???14?g?i.?jcos(?i??j)ndlWLWaterlineintegralBernoulliAcceleration???14???i.??jndSS0???12?(Xi.?S0??j?t)ndS?Ms.Ri.Xgj??(2)?????.n.dS?tS0..Momentum2nd order potential½á¹¹ÔÚ²¨ÀËÖеÄÏìÓ¦XÊÇͨ¹ý¼ÆËãÏÂÃæ·½³ÌµÃµ½:
[??2(Ms?Ma(?))?i?C(?)?K]X(?)?F(?)? Á÷Ìå¾²Á¦ºÍ¾²Á¦¾Ø£¨Hydrostatic Forces and Moments£©
ʽÖÐ Ms ÊǽṹÖÊÁ¿, Ma ÊǸ½¼ÓÖÊÁ¿, C ÊÇ×èÄá, K Á÷Ìå¸Õ¶È, F ÊDz¨ÀËÁ¦£¨°üÀ¨ÑÜ
ÉäºÍ·øÉäÁ¦£©.
×÷ÓÃÓò½á¹¹µÄ¾²Ë®Á¦ÊÇͨ¹ý¶Ô×÷ÓÃÓڽṹʪ±íÃæÉϾ²Ë®Ñ¹Ç¿µÄ»ý·ÖµÃµ½µÄ£¬Á¦¾ØÏà¶ÔÓڽṹµÄÖØÐÄ¡£¾²Ë®Ñ¹Á¦ºÍÁ¦¾Ø±í´ïʽÈçÏÂ
? ¾²Ë®Á¦¸Õ¶È¾ØÕó£¨Hydrostatic Stiffness Matrix£©
¶Ô¸ÕÌåÔÚij¸öƽºâλÖýøÐÐÔ˶¯·ÖÎöʱ£¬ÎÒÃÇÐèÒªÓÐÿ¸ö½á¹¹µÄ¸Õ¶È¾ØÕó£¬Ïà¶ÔÓÚ¸ÕÌåÖØÐÄÔ˶¯ÇÒ¾²Ë®Ñ¹Á¦¿¼ÂÇÁ˸ÕÌåÖÊÁ¿µÄ×÷ÓÃʱ£¬¸Õ¶È¾ØÕóµÄ±í´ïʽΪ£º
AΪˮÏß̾̾»ý£»xyzΪÔÚ´¬Ìå¹Ì¶¨×ø±êϵÖеÄ×ø±ê£»xgb, ygb ºÍ zgbΪÏà¶ÔÖØÐĵĸ¡ÐÄ×ø±ê¡£×¢Òâµ±¸¡Ìå´¦ÓÚ×ÔÓɸ¡¶¯×´Ì¬Ê±K46 and K56½«Îª0 ¸Õ¶È¾ØÕó¶Ô³Æ¡£ ? ÑÜÉä/·øÉ䲨Á¦
Fundamental Calculations assuming zero forward speedµÄÇé¿öÏ£º