大学物理练习下册(1)

个质点正在最大正位移处。则第二个质点的振动方程为 (A) x2?Acos(?t???11π); (B) x2?Acos(?t???π); 223(C) x2?Acos(?t???π); (D) x2?Acos(?t????)。 [ ]

2(3)图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的?2(?为固有角频率)值之比为 (A) 2∶1∶

1; (B) 1∶2∶4; 2(C) 2∶2∶1 ; (D) 1∶1∶2。

[ ]

(4)一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为

(A) T /12; (B) T /8; (C) T /6; (D) T /4。 [ ]

29-2 (1)一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为

=__________________;? =___________________; ? =__________________。

(2)在静止的升降机中,长度为l的单摆的振动周期为T0。当升降机以加速度a?1g竖直下降时,摆的振动周期T = 2________________。

(3)已知两个简谐振动曲线如图所示。x1的相位比x2的相位超前________________。

29-3 一质点在x轴上作简谐振动,选取该质点向右运动通过A点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B点,再经过2秒后质点第二次经过B点,若已知该质点在A、

B两点具有相同的速率,且AB = 10 cm求:

(1)质点的振动方程; (2)质点在A点处的速率。

29-4 如图所示, 质量为m1的光滑物块和轻弹簧构成振动系统,已知二弹簧的劲度系数分别为k1 = 3.0 N/m ,k2 =1.0 N/m 。此系统沿弹簧的长度方向振动,周期T1 =1.0 s,振幅A1 = 0.05 m。当物块经过平衡位置时有质量为m2 = 0.10 kg的油泥块竖直地落到物块上并立即粘住。求新的振动周期和振幅。(取二位数字)

29-5 一质量m = 0.25 kg的物体,在弹簧的力作用下沿x轴运动,平衡位置在原点,

-弹簧的劲度系数k = 25 N·m1。

(1) 求振动的周期T和角频率?。

(2) 如果振幅A =15 cm,t = 0时物体位于x = 7.5 cm处,且物体沿x轴反向运动,求初速v0及初相?。

(3) 写出振动的数值表达式.

练习30 简谐振动的能量、简谐振动的叠加

30-1 (1)一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为

(A) E1/4; (B) E1/2; (C) 2E1; (D) 4 E1。 [ ] (2)当质点以频率??作简谐振动时,它的动能的变化频率为 (A) 4 ?; (B) 2??; (C) ??; (D)

1?。 [ ] 230-2 (1)一系统作简谐振动, 周期为T,以余弦函数表达振动时,初相为零。在0≤t≤

1T范围内,系统在t =________________2时刻动能和势能相等。

(2)一单摆的悬线长l = 1.5 m,在顶端固定点的竖直下方0.45

>>闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐顔婂┑掳鍊愰崑鎾剁棯閹岀吋闁哄矉缍侀獮鍥敍閿濆棌鎸呮繝鐢靛仜濡﹥绂嶅⿰鍫濈闁逞屽墮椤啴濡堕崱妤€衼缂傚倸绉村Λ妤€鐜婚崸妤佸亜闁稿繐鐨烽幏铏圭磼缂併垹骞栭柟鍐茬箺閵囨劘顦寸紒杈ㄥ浮閹晠宕橀懠顑挎偅缂傚倷绶¢崰鏍偋閹惧磭鏆﹂柟鐑橆殕閸婄兘鎮楅悽鐧诲湱鏁幆褉鏀介柣妯虹仛閺嗏晛鈹戦纰卞殶闁瑰箍鍨硅灒濞撴凹鍨抽埀顒冨煐閵囧嫰寮村Δ鈧禍楣冩⒑閸濆嫮鐒跨紒鏌ョ畺楠炲棝寮崼顐f櫖濠电偞鍨堕敃鈺傚閿燂拷<<
12@gma联系客服:779662525#qq.com(#替换为@)