67 P52?52??8.066?10
因为扑克牌充分洗乱,所以任一特定排列出现的概率是相等的。 设事件A为任一特定排列,则其发生概率为 P?A??1?1.24?10?68 52?可得,任一特定排列所给出的信息量为
I?A???log2P?A??log252??225.58比特 ?67.91哈特
(1) 设事件B为从中抽取13张牌,所给出的点数都不同。
13
扑克牌52张中抽取13张,不考虑其排列顺序,共有C52种可能的组合。而扑克牌中
每一种点数有4种不同的花色。而每一种花色都有13张不同的点数。13张牌中所有的点数都不相同(不考虑其顺序)就是每种点数的花色不同,所以可能出现的状态数为4。因为
13牌都是充分洗乱的,所以在这C52种组合中所有的点数都不相同的事件都是等概率发生的。
13所以
413413?1339?? P?B??13??1.0568?10?4
C5252?则事件B发生所得到的信息量为
413 I?B???logP?B???log213?13.208 比特
C52 ?3.976 哈特
2.6.1 (原2.6) 设随机变量X?{x1,x2}?{0,1}和Y?{y1,y2}?{0,1}的联合概率空间为
?XY??(x1,y1)(x1,y2)(x2,y1)(x2,y2)? ?P???18?383818??XY??定义一个新随机变量Z?X?Y(普通乘积)。
(1)计算熵H(X)、H(Y)、H(Z)、H(XZ)、H(YZ)以及H(XYZ);
(2)计算条件熵H(X|Y)、H(Y|X)、H(X|Z)、H(Z|X)、H(Y|Z)、H(Z|Y)、H(X|YZ)、H(Y|XZ)以及H(Z|XY);
(3)计算互信息量I(X;Y)、I(X;Z)、I(Y;Z)、I(X;Y|Z)、I(Y;Z|X)以及I(X;Z|Y);
131 解 (1)p?x?0??p?x?0,y?0??p?x?0,y?1????
882311 p?x?1??p?x?1,y?0??p?x?1,y?1????
882 H?X????P?xi?logP?xi??1
i131?? 882311 p?y?1??p?x?0,y?1??p?x?1,y?1????
882 H?Y????pyjlogpyj?1 bit/symbol
p?y?0??p?x?0,y?0??p?x?1,y?0??j????
Z?XY的概率分布如下
??z?0(0?0,0?1,1?0)z?1(1?Z???P(Z)??? 7(? 1 ?3 ?3) 1???8888?821?)? ???711??7H(Z)???p(zk)???log?log)??0.544bit/symbol
888??8K由p(xz)?p(x)p(zx)得
p(x?0,z?0)?p(x?0)p(z?0x?0)?1 2p(x?0,z?1)?p(x?0)p(z?1x?0)?03p(x?1,z?0)?p(x?1)p(z?0x?1)?p(x?1)p(y?0x?1)?p(x?1,y?0)?
81p(x?1,z?1)?p(x?1)p(z?1x?1)?p(x?1)p(y?1x?1)?p(x?1,y?1)?813311??1H(XZ)????p(xizk)???log?log?log??1