2019-2020中考数学试题(附答案)
一、选择题
1.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )
A.点A B.点B C.点C D.点D
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家2.5km B.体育场离文具店1km
C.林茂从体育场出发到文具店的平均速度是50mmin D.林茂从文具店回家的平均速度是60mmin
3.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A.
1 10B.
1 9C.
1 6D.
1 54.在同一坐标系内,一次函数y?ax?b与二次函数y?ax2?8x?b的图象可能是
A. B.
C. D.
5.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个 A.2
B.3个 B.3
C.4个 C.5
D.5个 D.7
6.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) 7.?2的相反数是( ) A.?2
B.2
C.
1 2D.?1 28.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
9.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac
A.1 B.2 C.3 D.4
10.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置
(?ABC?30?),其中A,B两点分别落在直线m,n上,若?1?40?,则?2的度数为( )
A.10? B.20?
3C.30° D.40?
11.下列计算正确的是( ) A.a4b???a7b3 B.?2b4a?b?2???8ab?2b
3C.a?a3?a2?a2?2a4 D.(a?5)2?a2?25
12.下列各式化简后的结果为32 的是( ) A.6
B.12
C.18 D.36 二、填空题
13.当直线y??2?2k?x?k?3经过第二、三、四象限时,则k的取值范围是_____. 14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元. 15.不等式组??x?a?0有3个整数解,则a的取值范围是_____.
?1?x?2x?511?1?()=______. 4216.计算:2cos45°﹣(π+1)0+17.若a,b互为相反数,则a2b?ab2?________.
18.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果tan∠DCF的值是____.
AB2?,那么BC3
19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.
20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.
三、解答题
21.(问题背景)
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 . (探索延伸)
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由. (学以致用)
如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为 .