2013½ì¸ß¿¼Êýѧ±¸¿¼¸´Ï°½Ì°¸2.doc ÏÂÔØ±¾ÎÄ

nµÄ´óС¹ØÏµÎª .

9£®¸ø³öÏÂÁÐËĸöÃüÌ⣺

¢Ùº¯Êýf(x)?lnx?2?xÔÚÇø¼ä(1,e)ÉÏ´æÔÚÁãµã

¢ÚÈôf'(x0)=0£¬Ôòº¯Êýy?f(x)ÔÚx?x0È¡µÃ¼«Öµ£» ¢Ûm¡Ý-1£¬Ôòº¯Êý

y?log1(x2?2x?m)2µÄÖµÓòΪR£»

a?exf(x)?a?11?aexÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯Êý¡±µÄ³ä·Ö²»±ØÒªÌõ¢Ü¡°¡±ÊÇ¡°º¯Êý

¼þ¡£

ÆäÖÐÕæÃüÌâÊÇ £¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©

Èý¡¢½â´ðÌ⣨10¡¢11ÌâÿСÌâ15·Ö£¬12Ìâ16·Ö£¬×Ü·Ö46·Ö£© 10£®¾Ýµ÷²é£¬°²»ÕijµØÇøÓÐ100Íò´ÓÊ´«Í³Å©ÒµµÄÅ©Ãñ£¬È˾ùÄêÊÕÈë3000Ôª.ΪÁËÔö¼ÓÅ©ÃñµÄÊÕÈ룬µ±µØÕþ¸®»ý¼«Òý×ʽ¨Á¢¸÷ÖÖ¼Ó¹¤ÆóÒµ£¬¶Ôµ±µØµÄÅ©²úÆ·½øÐÐÉî¼Ó¹¤£¬Í¬Ê±ÎüÊÕµ±µØ²¿·ÖÅ©Ãñ½øÈë¼Ó¹¤ÆóÒµ¹¤×÷. ¾Ý¹À¼Æ£¬Èç¹ûÓÐx(x£¾0)ÍòÈ˽øÈëÆóÒµ¹¤×÷£¬ÄÇôʣÏ´ÓÊ´«Í³Å©ÒµµÄÅ©ÃñµÄÈ˾ùÄêÊÕÈëÓÐÍûÌá¸ß2x%£¬¶ø½øÈëÆóÒµ¹¤×÷µÄÅ©ÃñÈ˾ùÄêÊÕÈëΪ3000aÔª£¨a£¾0Ϊ³£Êý£©.

£¨I£©ÔÚ½¨Á¢¼Ó¹¤ÆóÒµºó£¬ÒªÊ¹¸ÃµØÇø´ÓÊ´«Í³Å©ÒµµÄÅ©ÃñµÄÄê×ÜÊÕÈë²»µÍÓÚ¼Ó¹¤ÆóÒµ½¨Á¢Ç°µÄÄê×ÜÊÕÈ룬ÇóxµÄȡֵ·¶Î§£»

£¨II£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬µ±µØÕþ¸®Ó¦°²ÅŶàÉÙÍòÅ©Ãñ½øÈë¼Ó¹¤ÆóÒµ¹¤×÷£¬²ÅÄÜʹÕâ100ÍòÅ©ÃñµÄÈ˾ùÄêÊÕÈë´ïµ½×î´ó£¿

a11£®ÒÑÖªº¯Êýf(x)=lnx-x(a¡ÊR).

(1)µ±a¡Ê£Û-e,-1£Ýʱ£¬ÊÔÌÖÂÛf(x)ÔÚ£Û1,e£ÝÉϵĵ¥µ÷ÐÔ£» (2)Èôf(x)

12£®(̽¾¿´´ÐÂÌâ)Èôº¯Êýf(x)¶Ô¶¨ÒåÓòÖÐÈÎÒâx¾ùÂú×ãf(x)+f(2a-x)=2b,Ôò³Æº¯Êýy=f(x)µÄͼÏó¹ØÓÚµã(a,b)¶Ô³Æ.

x2?mx?mx£¨1£©ÒÑÖªº¯Êýf(x)=µÄͼÏó¹ØÓÚµã(0,1)¶Ô³Æ£¬

ÇóʵÊýmµÄÖµ£»

£¨2£©ÒÑÖªº¯Êýg(x)ÔÚ£¨-¡Þ£¬0£©¡È(0,+¡Þ)ÉϵÄͼÏó¹ØÓÚµã(0,1)¶Ô³Æ£¬ÇÒµ±x¡Ê(0,+¡Þ)ʱ£¬g(x)=x2+ax+1,Çóº¯Êýg(x)ÔÚ (-¡Þ,0)ÉϵĽâÎöʽ£»

£¨3£©ÔÚ(1)(2)µÄÌõ¼þÏ£¬µ±t>0ʱ£¬Èô¶ÔÈÎÒâʵÊýx¡Ê (-¡Þ,0)£¬ºãÓÐg(x)

xx1. ¡¾½âÎö¡¿Ñ¡C ÒòΪº¯Êý£¨fx£©=log2xµÄ·´º¯ÊýΪy?2,ËùÒÔg(x)?2,ÓɵÃ

g(11)?a?14

21a?1111?,???2,a?.4a?12

2. ¡¾½âÎö¡¿Ñ¡B µ±nA?1ʱPA?0£¬¹Ê¢Ù´íÎó£»ÈôPA?1,ÔònA?10£¬Èô

PA?2,ÔònA?100£¬¹Ê¢Ú´íÎó£»

10105nB?5?10£¬?nA??2?10,?PA?lg(nA)?lg2?5.45?10ÉèB¾úµÄ¸öÊýΪ

4ÓÖ?lg2?0.414,ËùÒÔ5?PA?5.5£¬¹Ê¢ÛÕýÈ·¡£

2|x|?x?1£¬ËùÒÔº¯Êýy?|x|µÄͼÏñÔÚº¯Êý3. ¡¾½âÎö¡¿Ñ¡A ÒòΪ

y?x2?1ͼÏñµÄÏ·½£¬ÅųýC¡¢D£» µ±x??ʱ£¬|x|?x2?1£¬ÅųýB£¬¹ÊÑ¡A¡£

4. ¡¾½âÎö¡¿Ñ¡

ax?a?xS(x)?2D ÒòΪ

ax?a?xC(x)?2£¬

ax?y?a?(x?y)?S(x?y)?,2ax?a?xay?a?yax?a?xay?a?yS(x)C(y)?C(x)S(y)????222211?ax[(ay?a?y)?(ay?a?y)]?a?x[?(ay?a?y)?(ay?a?y)]441xy1?x?yax?y?a?(x?y)?aa?aa?,222?S(x?y)?S(x)C(y)?C(x)S(y).

ͬÀí¿ÉÖ¤ÆäËü3¸öʽ×ÓÒ²³ÉÁ¢¡£

5. ¡¾½âÎö¡¿Ñ¡AÒÀÌâÒâ¿ÉµÃº¯ÊýÓ¦ÔÚx?(0,??)Éϵ¥µ÷µÝ¼õ£¬¹ÊÓÉÑ¡Ïî¿ÉµÃAÕýÈ·¡£ 6.

¡¾

½â

Îö

¡¿

Ñ¡

D

f(log23)?f(log23?1)?f(log23?2)?f(log23?3)?f(log224)?2log224?24.

7.

m?¡¾½âÎö¡¿ÓÉÒÑÖªµÃ

1111,0?m?1,n?1,?[m2,n]?[2,n],f(2)?log22?2log2n?2f(n).nnnn

Ëù

f(ÒÔ

f(x)ÔÚÇø¼ä

[m2n,]ÉÏ

µÄ×î´óֵΪ

115)?2f(n).?2logn?2,?n?1,?n?2.m?.n?m?.22 n22¹Ê

5.2´ð°¸£º

8. ¡¾½âÎö¡¿m

a?5?1?(0,1)x2£¬º¯Êýf(x)?aÔÚRÉϵݼõ¡£ÓÉf(m)?f(n)µÃ£º

´ð°¸£ºm

9. ¡¾½âÎö¡¿¢ÙÕýÈ·£ºÏÔÈ»f(x)?lnx?2?xÔÚ(1,e)ÉÏÊÇÔöº¯Êý£¬ÇÒ

f(1)??1?0,f(e)?e?1?0,

ËùÒÔº¯Êýf(x)?lnx?2?xÔÚÇø¼ä(1,e)ÉÏ´æÔÚÁãµã£»¢Ú²»ÕýÈ·£¬Àý

f(x)?x3,f?(x)?3x2?0,

ÓÉf?(x)?0µÃx?0,µ«x?0²»ÊÇf(x)?x3µÄ¼«Öµµã£»¢ÛÕýÈ·£º

?m??1,???4?4m?0,x2?2x?mÄÜÈ¡µ½ËùÓеÄÕýʵÊý£¬ËùÒÔº¯ÊýµÄÖµÓòΪR.1?exf(x)?,x?f(x)?1?e¶ÔÓڢܣºÈôa?1£¬Ôò

1?e?1?ex?x?1(?1(?xe?)xeex1??f?(.x)??xe?)xeex1?1?exa?exf(x)?f(x)?x1?eµÄ¶¨ÒåÓòΪR£¬ËùÒÔa?1?¡°º¯Êý1?aexÔÚ¶¨ÒåÓòÓÖ

a?exf(x)?1?aexÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯Êý£¬ÔòÉÏÊÇÆæº¯Êý¡±£»Èôº¯Êý

a?e?x(a?e?x)exaex?1f(?x)???x?x?xxf(?x)??f(x)ºã³ÉÁ¢¡£ÒòΪ1?ae(1?ae)ee?a£¬

a?exaex?1xxxx2x22??,?a(?ea)?(e??)ae?(ae?1)¼´(a?1e)?,a(?xex?aËùÒÔ1?ae1)1ºã³ÉÁ¢£¬

a?exf(x)?2a?1?0,?a??1,1?aexÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯Êý¡± ÍÆËùÒÔ£¬¹Ê¡°º¯Êý

²»³ö¡°a?1¡±£¬