(2)由(1)知BC?AB,
QAB?BB1,B1B?BC?B,B1B,BC?平面B1C1CB,?AB?平面B1C1CB.
又A1A//B1B,B1B?平面B1C1CB,A1A?平面B1C1CB,
?A1A//平面B1C1CB,?点E到平面B1C1CB的距离为线段AB的长.
?VC?BC1E?VE?BC1C?1?S△BCC?AB?1?1?3?2?1?3.
13323
19答案及解析:
答案:(1)根据散点图可知y与x正线性相关. (2)由所给数据计算得 1x?(1?2?...?7)?4,
7?(xi?17i?17i?x)2?28,
?x)(yi?y)??xiyi?x?yi?4517?4?1074?221,
i?1i?177?(x$?bi?(xi?147i?x)(yi?y)?i?(xi?1?x)2221?7.89, 28$?y?bx$?1074?7.89?4?121.87, a7y?7.89x?121.87. 所求线性回归方程为$(3)由题中的残差图知历年数据的残差均在-2到2之间,说明线性回归方程的拟合效果较好.
20答案及解析:
答案:(1)当直线l平行于x轴时,直线l:y?1, 1?11??2?则MN?2b2?1?2??2,即b?1?2??
?a?2?a?又c?1,a2?b2?c2,?a2?2,b2?1.
uuuruuur(2)当直线l的斜率不存在时,直线l的方程为x?0,此时不满足MF?2FN.
y2?椭圆C的标准方程为?x2?1.
2且由(1)知当k?0时也不满足.
设直线l的斜率为k,则直线l的方程为y?kx?1(k?0) 设M(x1,y1),N(x2,y2).
?y?kx?1?联立得方程组?y2, 2?x?1??2消去y并整理,得2?k2x2?2kx?1?0. ?x1?x2??2k1,. xx??122?k22?k2uuuruuurQMF?2FN,?x1??2x2,
2???x?x??12x1x211422 ??,即4k?22?k,解得k??27???直线l的方程为k??14x?1. 7
21答案及解析:
答案:(1)由题意可得f?x?的定义域为(0,??),
xx12ae?x?2??x?ae??x?2?, f??x???2??3xxx3x当a?0时,易知x?aex?0,
所以,由f??x??0得0?x?2,由f??x??0得x?2, 2)上单调递减,在?2,???上单调递增. 所以f?x?在(0,?x?ae??x?2?,
(2)由(1)可得f??x??xx3当0?x?2时
x?2?0, 3x记g?x??x?aex,则g??x??1?aex, 2)内有两个极值点, 因为f?x?在区间(0,2)内有两个零点,所以a?0. 所以g?x?在区间(0,令g??x??0,则x??lna,
2)上,g?(x)?0,所以在(0,2)上, ①当?lna?0,即a?1时,在(0,g?x?单调递减,g?x?的图象至多与x轴有一个交点,不满足题意
②当?lna?2,即0?a?12)上,g??x??0,所以在(0,2)上, 时,在(0,e2g?x?单调递增,g?x?的图象至多与x轴有一个交点,不满足题意.
③当0??lna?2,即
12)上单调递减, ?a?1时,g?x?在(0,?lna)上单调递增,在(?lna,2e2)内有两个零点, 由g?0???a?0知,要使g?x?在区间(0,??g??lna???lna?1?021?a?必须满足?,解得, 22eeg2?2?ae?0?????21?综上所述,实数a的取值范围是?2,?.
?ee?
22答案及解析:
答案:(1)依题意,直线l的直角坐标方程为x?4.
曲线C:?2?2?cos??2?sin?,故x2?y2?2x?2y?0,故?x?1???y?1??2, ??x?1?2cos?故曲线C的参数方程为?,(φ为参数).
y?1?2sin???22 (2)设M(?1,?),N(?2,?),则?1?2cos??2sin?,?2?所以OM4. cos??1?2cos??2sin??cos?sin?cos??cos2?11????sin2??cos2????ON?244422?π?1sin?2????. 44?4?2π?πππ3π??sin?2????1. ,所以?2???,所以24?4444??因为0?k?1,故0???所以
OM12π?11?2?11?2???sin?2?????,故的取值范围是?,?. ON244?44?24??
23答案及解析:
?3x?4,x?2?答案:(1)f?x???x?8,?3?x?2,
??3x?4,x??3??x?2??3?x?2?x??3所以不等式f?x??8等价于?,或?,或?,
x?8?8?3x?4?83x?4?8???解得x?2或0?x?2或x??4,
?0,??) 所以不等式f?x??8的解集为(??,?4][5), (2)由(1)可得函数f?x?图象的最低点的坐标为(?3,则m??3,n?5,所以a?b?m?n?2,
22a2b2?1?a?b?a?1?b?1??????????? 4b?1a?1b?1a?1??22?11?a?a?1?b?b?1?1????a2?b2???2ab?a2?b2???a2?b2??1,当且仅当a?b?1时取4?b?1a?144?等号,
a2b2所以的最小值为1 ?b?1a?1