台湾省历年中考真题
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.
来#%源中国教育^&出版网@]
考点:二 次函数综合题. 分析:( 1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,
由解析式得到;
(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;
(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论. 解答: :解(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,
∴
,解得:a=﹣1,b=1,
∴抛物线的解析式为:y=﹣x2+1,
抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).
(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:
,解得k=﹣1,b=1,∴y=﹣x+1.
∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n, ∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1, ∴直线BD的解析式为:y=﹣x﹣1.
将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1, ∵B点横坐标为﹣1,则D点横坐标为2,
D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).
如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3, 在Rt△BDN中,BN=DN=3,由勾股定理得:BD=; 在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=; 又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=; ∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.
全国各省市历年中考真题
台湾省历年中考真题
(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形: (I)若△BPE∽△BDC,如答图②所示, 则有
,即
,∴PE=3BE.
设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m, ∴点P的坐标为(﹣m,3﹣3m).
∵点P在抛物线y=﹣x2+1上,
∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,
当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去. 因此,此种情况不存在;
(II)若△EBP∽△BDC,如答图③所示, 则有
,即
,∴BE=3PE.
设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m, ∴点P的坐标为(m, +m). ∵点P在抛物线y=﹣x2+1上,
∴+m=﹣(m)2+1,解得m=﹣1或m=, ∵m>0,故m=1舍去,∴m=, 点P的纵坐标为: +m=+×=, ∴点P的坐标为(,).
综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).
全国各省市历年中考真题
台湾省历年中考真题
点评:本 题是代数几何综合题,考查了二次函数的图象与性质、一次函数的图象与性质、待
定系数法、相似三角形的判定与性质、勾股定理等重要知识点.第(2)问的解题要点是求出点D的坐标,第(3)问的解题要点是分类讨论.
全国各省市历年中考真题