?8km4m2?4?x1?x2?,x1x2?.
1?4k21?4k21∵k1k2??,?4y1y2?x1x2?0.
4?4?kx1?m??kx2?m??x1x2?4k2?1x1x2?4km?x1?x2??4m232k2m22?4m?4??4m?021?4k2??
化简得:2m2?1?4k2,?m2?1. 2??64k2m2?44k2?14m2?4?164k2?1?m2?16m2?0,
设T?x0,y0?,则x0???????x1?x2?4km?2k1,. ??y?kx?m?00221?4km2m?OT?22x0?2y0?2?4k213?1?. ??2??2??,2,?OT?,2?22??m4m4m?2??2?综上,OT的取值范围为??2?,2?. ……12分 ?2?21.解:(1)函数定义域为(??,??).
g?(x)?2x2?2(1?a)x?2a?(2x?2)(x?a), 由g?(x)?0?x??1,或x?a,
x?(??,a),g?(x)?0,g(x)在(??,a)上为增函数,①当a??1 时,x?(a,?1),g?(x)?0,g(x)在(a,?1)上为减函数,
x?(?1,??),g?(x)?0,g(x)在(?1,??)上为增函数.②当a??1时,x?(??,??),g?(x)?0,g(x)在(??,??)上为增函数,
x?(??,?1),g?(x)?0,g(x)在(??,?1)上为增函数,③当a??1时,x?(?1,a),g?(x)?0,g(x)在(a,?1)上为减函数, ……5分
x?(a,??),g?(x)?0,g(x)在(a,??)上为增函数.(2)f?x??g(x)? g(x)?f(x)?0 ,设F(x)?g?x??f(x)则 F?(x)?(2x?1)lnx?(x2?x)1?2x2?2(1?a)x?a?(2x?1)(lnx?x?1?a), x因为x??0,???,令F'?x??0,得lnx?x+1?a?0. 设h?x??lnx?x+1?a,由于h?x?在?0,???上单递增,
9
当x?0时, h?x????;当x???时, h?x????, 所以存在唯一x0??0,???,使得h?x0??0,即a?x0?lnx0+1 . 当0?x?x0时, F'?x??0,所以F?x?在?0,x0?上单调递减; 当x?x0时, F'?x??0,所以F?x?在?x0,???上单调递增. 当
x??0,???时,
F?F??mx?i?n0??2x0?l?2nx03??30x?1x0?2 x?0a?x02?x0lnx0???23x0???x0?lnx0?x02??x0?lnx0?1?x0?b 31??x03?x02?x0?b.
3因为f?x??g(x)恒成立, 所以F?x?min??131x0?x02?x0?b?0,即 b?x03?x02?x0. 33b?2a?131x0?x02?x0?2a?x03?x02?x0?2lnx0?2 . 33设??x??13x0?x02?x0?2lnx0?2,x??0,???, 3232x?1x?3x?2??2x+2x?x?22则?'?x??x?2x?1?? ?xxx??当0?x?1时, 当x?1时,
?'?x??0,所以??x?在?0,1?上单调递减;
?'?x??0,所以??x?在?1,???上单调递增.
当x??0,???时,
?'?x?min???1???2.
51372b?2a??时,.……12分 x0?x0?x0???min333所以当x0?1,即a?1+x0?lnx0?2,b?x2y2??1,P的坐标为??2,0?, 22.解(1)已知曲线C的标准方程为
124?2x??2?t?x2y2?2?1联立, 将直线l的参数方程?与曲线C的标准方程?124?y?2t??2
10
得t2?2t?4?0,则|PA|?|PB|?|t1t2|?4. ----------------5分
x2y2?1,可设曲线C上的动点A(23cos?,2sin?), (2)由曲线C的标准方程为?124则以A 为顶点的内接矩形周长为4(23cos??2sin?)?16sin(??),0???.
32因此该内接矩形周长的最大值为16,当且仅当?????6时等号成立. ------------10分
??2x,x??1,?23.解(1)当a?1时,x??1 f?x??x?1?x?1??2,?1?x?1,
?2x,x?1,?当x??1,x?x??2x,x??1.
当?1?x?1,x?x?2,x??1或x?2,舍去.
当x?1,x?x?2x,x?3.综上,原不等式的解集为{x|x??1或x?3} . ----------------5分
2221??(a?1)x?1?a,x??,?a?1?(2)f?x??ax?1?x?a??(a?1)x?1?a,??x?a,
a??(a?1)x?1?a,x?a,??2当0?a?1时,fmin(x)?f(a)?a?1?2,a?1;
当a?1时,fmin(x)?f(?)?a?
1a1?2,a?1;综上,a?[1,??) . ----------------10分 a 11