聚酰亚胺基础知识-1(横田力男) 下载本文

总结以上的论述,在由芳香族四酸二酐与芳香族二胺两步法合成聚酰亚胺过程中,首先进行(3)式的聚酰胺酸生成的正反应,接着第二步的加热前期过程是(4)式的由聚酰胺酸生成聚酰亚胺的反应(正反应)和(8)式的聚酰胺酸断链反应(分子量降低的逆反应)同时发生,再进一步加热到后期(3)式的聚酰亚胺分子链再结合的反应(恢复分子量的正反应)和(4)式的由聚酰胺酸生成聚酰亚胺反应相继发生。由于经过这种过程,虽然得不到由低分子量聚酰胺酸形成的低分子量聚酰亚胺膜,只要原来的聚酰胺酸的分子量足够高,即使加热过程中会伴随分子量的变化,但通过设计好最终高温加热处理的条件,就可以得到高分子量亚胺化100%的高性能的聚酰亚胺薄膜。

这里谈一下聚酰亚胺酸加热过程中发生的副反应。一个是环化异构亚胺生成的可能。环化异构亚胺的生成,是由(5)式的聚酰胺酸互变异构体生成的烯醇型异构体7,再由(6)式这个烯醇型异构体7脱水环化反应得来。这个环化异构亚胺不稳定,把它进一步加热很容易按(7)式发生异构化(Chapman型转移)生成稳定的聚酰亚胺6。对把聚酰胺酸进行加热处理(到350℃)得到的聚酰亚胺进行考察,实际上观察不出有异构亚胺结构存在。但不能由此就因为在聚酰胺酸加热生成聚酰亚胺过程中,不存在(5)式的历程(环状异构亚胺的生成和由它异构化生成的环亚胺)。这是因为在聚酰胺酸加热进行亚胺化时假定生成异构亚胺9,因为它是过程中的不稳定生成物,在进一步的加热过程中发生异构化转化成热力学稳定的环状亚胺是完全可能的,如后面的2.5项所述。在聚酰胺酸进行化学法亚胺化时有环状异构化亚胺生成。因此在这种聚酰胺酸加热亚胺化过程中认为在中途阶段也有这种异构亚胺生成也是妥当的。

第二是有形成分子间亚胺化的可能。不一定在聚酰胺酸的分子内,而是在两个分子间发生脱水时,会按(11)式生成分子间亚胺链。这种分子间亚胺化,有人已指出,在实际上对聚酰胺酸加热到150~200℃附近时,虽然很少但发生过。之后有人否定这种分子间亚胺键的形成48)。这种分子间亚胺链的形成,对聚酰胺酸来讲相当于分子间形成交联的副反应,即使假定它形成,这种分子间的亚胺键在加热到高温时,很易转变成稳定的分子内亚胺键(环化亚胺)回到原来的聚酰胺酸,在聚酰胺酸加热生成聚酰亚胺的过程中完全没有坏影响。

47)

47)

22,33)

(11)

(12)

把聚酰胺酸加热到300℃以上合成聚酰亚胺时,有时生成的聚酰亚胺会不熔。这种不熔的原因除上述分子间交联以外, 由某种副反应形成交联的可能性是不能否认的,但主要还是考虑在生成的聚酰亚胺热处理时引起形态学的变化,例如可能是形成分子链填充度高的有序结构等造成的。

2.5聚酰胺酸的化学法亚胺化

下面看一下聚酰胺酸的化学法亚胺化。聚酰胺酸,用酸酐和叔胺混合物等脱水环化试剂在室温~100℃之间处理,很容易转化成聚酰亚胺22,49~53)。聚酰胺酸不论是溶液状态还是薄膜状态都能转化成聚酰亚胺,作为化学法亚胺化的典型例子,下面介绍一下有关薄膜状聚酰胺酸的化学亚胺化49)。从聚酰胺酸的DMAc溶液经流延在室温下干燥成半干状(残留有DMAc)的薄膜在醋酐-吡啶(1:1)混合溶液中于室温浸泡15分钟后(这时脱水环化几乎完成了),取出用醋酐-吡啶-苯(1:1:8)的混合溶剂洗净。把这种膜用框固定在室温下干燥,再在200℃干燥1小时。

如上所述聚酰胺酸的代表性脱水环化剂是醋酐-吡啶。用它与聚酰胺酸反应时,已察明生成的不仅是聚酰亚胺(热力学稳定的生成物,后面(15)式所示),同时还会生成相当于它的异构体的异构聚酰亚胺(反应过程中不稳定的生成物,如后面的(16)式所示)

51),53)

不过这个环状异构聚酰亚胺结构在最后高温加热阶段会按(7)式,受热而异构化全部转变成热力学稳定的聚酰亚胺。

聚酰胺酸用另外的脱水环化试剂醋酐-三乙胺时,不生成环状异构化聚酰亚胺而很快生

51)~53)

成聚酰亚胺53)。再用别的脱水环化试剂,如三氟醋酸酐(不合用叔胺)或双环己基(替)碳化二亚胺53)~55)与聚酰胺酸作用时,优先生成聚异构酰亚胺。

下面看一下用醋酐-吡啶混合物做脱水环化剂与聚酰胺酸作用时,聚酰亚胺和异构聚酰亚胺生成的历程。首先是聚酰胺酸与醋酐反应生成聚酰胺酸和醋酐的混合酸酐。这个聚酰胺酸的混合酸酐虽然取热力学稳定的酮型,但也可能按(14)式互变异构成烯醇型(不稳定)聚酰胺酸的混合物。接着是聚酰胺酸的混合酸酐上胺的氮在分子内向混合酸酐的芳香族羧酸上的羰基碳进行亲核攻击,按(15)式经前面(4)式所示的同样过程生成聚酰亚胺,同时生成副产物醋酸。在这里把(15)式与前面的(4)式相比,(15)式所生成副产物醋酸比(4)式所生成副产物水的脱离性更好,所以(15)式更容易生成聚酰亚胺。(16)式是烯醇型聚

(13) 酰胺酸的混合酸酐的分子内环化缩合反应式。这时是烯醇型聚酰胺酸的混合酸酐上的羟基氧向分子内混合酸酐的芳香族羧酸上的羰基碳进行亲核攻击,经过与前面的(6)式相同的过程生成异构聚酰亚胺,同时生成副产物醋酸。把这个(16)式与前面的(6)式比较,也是(16)式生成的醋酸比(6)式生成的水容易脱离,所以与(6)式相比还是(16)式能更快的生成异构聚酰亚胺。进一步将(15)式与(16)式相比与前面的(4)式与(6)相比一样,由(15)式生成的热力学稳定的聚酰亚胺同(16)式生成的异构聚酰亚胺是反应过程形成的不稳定产物。重复讲,异构聚酰亚胺按(7)式加热很容易异构化(Chapman型转移)成热力学稳定的聚酰亚胺。

(14)

(15)

(16)

象这样聚酰胺酸的化学法亚胺化过程中,多数情况下在聚酰亚胺中会副产环状异构聚酰亚胺,它又能引起进一步的副反应。举一例来讲,象(7)式那样发生聚酰胺酸中环状异构聚酰亚胺与另外的聚合物末端的胺基进行开环加成生成邻二酰胺结构的副反应。这是因为这个反应是环状异构聚酰亚胺的亲电子反应活性高(与上面所讲的不稳定性相对应),非常容易受胺等亲核攻击。实际上在聚酰胺酸的化学法亚胺化时,用醋酐-吡啶为脱水环化试剂在溶液中进行时,比较一下原聚酰胺酸和生成的聚酰亚胺分子量,会发现与数均分子量会有很小增加相对应,重均分子量的增加则很大56)。这种重均分子量的增大,可认为是通过(17)式的环状异构聚酰亚胺的介入形成分子间交联副反应所致。不过这样生成的邻二酰胺结构不稳定,在进一步的高温加热中会按(18)式很易转变成聚酰亚胺和胺端基的聚合物,实际上会使分子间交联消失。

(17)

这样一来,聚酰胺酸在化学法亚胺化的情况下,首先是聚酰胺酸的羧酸基团由于生成混合酸酐而被封锁起来,所以不出现加热亚胺过程所见到的分子量下降和平衡化,还能排除

(18)

水解反应。因此具有很容易得到均匀拉伸特性的聚酰亚胺薄膜的好处。聚酰胺酸的化学法亚胺化与单纯的加热亚胺化相比有费用要高的缺点,但只要发挥上述优点,不仅在实验室即使在工业上也在部分聚酰亚胺膜的合成制备中被采用。

另外,由聚酰胺酸脱水环化生成的异构聚酰亚胺与相应的聚酰亚胺比,由于具有不对称的结构,所以具有溶于溶剂、玻璃化转变温度低、熔融粘度低等特征,同时还能在不产生挥发成分情况下易转变成聚酰亚胺的特点,这表明其加工性好。作为这种异构聚酰亚胺的应用例子是由异构酰亚胺形成的热固性酰亚胺低聚物[サ—ミッドIP600](两末端含乙炔基)作为耐热粘合剂和碳纤维复合材料用耐热性基体树脂,由カネボ-ェヌェスシ-公司商品化。还有想把高分子量的聚异构酰亚胺作为改善聚酰亚胺加工性的一种预聚体应用的研究也在加快进行

54,57,58)

57)

3.聚酰亚胺的一步合成法

3.1聚酰亚胺的高温熔融合成法

原始的聚酰亚胺合成法是一步合成法的高温熔融合成。它远在前面所介绍的合成法之

前可以追溯到20世纪50年代中期。均苯四甲酸((49)式的RH)或者它的二酯二酸((19)式)可由(19)式从均苯四甲酸酐加乙醇开环加成来合成。这时由于R=CH3会存在异构体a和b,其混合物也用a表示,以下同样和脂肪族二胺得到的尼龙盐型单体在250~300℃通过熔融缩聚合成高分子量脂肪-芳香族聚均苯酰亚胺的方法((20)式)作为美国专利公布是在1955年的事59)。这个方法是从二羧酸和二胺得到尼龙盐,经熔融缩聚制备脂肪族聚酰胺(尼龙)合成方法的扩充。

(19)

(20)

不过这时的聚酰亚胺的高温熔融合成法的难处在于它仅局限于在这种加热条件可熔融的聚酰亚胺(这种情况下只适用于碳原子数9以上的二胺生成均苯型聚酰亚胺)的合成,所以并未引起多少关注。不过其后这种思路从二脂二羧酸和脂肪族二胺相组合扩展到与芳香族二胺的组合,在热固型聚酰亚胺[PMR-15](美国宇航局)的开发中得到发展。[PMR]是[in situ Polymerization of Monomeric Reaction]有单体原位聚合的意思,具体是指将:降水片烯二羧酸单甲酯,二苯甲酮四羧酸二甲酯和双(4-氨基苯基)甲烷相混合的高浓度甲醇溶液(按照能生成分子量1500的酰亚胺低聚物的要求调整各组分的成份比)。芳香族二酯二羧酸和芳香族二胺在室温下虽然不反应,例如把这种溶液与碳纤维织布浸渍后,加热使甲醇蒸发后,加热到100~150℃时混合物呈熔融状态,经过形成聚酰胺酸后再亚胺化。这样就形成了两末端有热固性官能团的分子量在1500左右的酰亚胺低聚物,温度再升高发生交联形成热固性聚酰亚胺。

由芳香族二酯二羧酸和芳香族二胺生成的聚酰胺酸(聚酰亚胺的前驱体)的反应不是胺基直接亲核攻击酯羧酸中的酯羧基((21)式),而是酯羧酸由于加热按(22)式在一面脱去醇的同时生成酸酐,再按(3)式由这个酸酐与胺开环加成生成酰胺酸的过程61)~64)。这样生成的酰胺酸按(4)式实现亚胺化。

60)

(21)

(22)