2011½ì¸ßÈýÊýѧ¾«Æ·¸´Ï°Ö®Å×ÎïÏß¼°ÆäÐÔÖÊ
1£®²»Òª°ÑÅ×ÎïÏߵıê×¼·½³ÌºÍ¶þ´Îº¯ÊýµÄÒ»°ãÐÎʽ»ìΪһ̸£»Å×ÎïÏߵĽ¹µãλÖÃÈ¡¾öÓÚÄĸö±äÁ¿ÊÇÒ»´ÎµÄ¼°ÆäϵÊýµÄÕý¸º£»Å×ÎïÏß±ê×¼·½³ÌÖеġ°p¡±±íʾ½¹×¼¾à¡£ [¾ÙÀý1] Å×ÎïÏßy?ax2µÄ×¼Ïß·½³ÌΪy?2£¬ÔòaµÄֵΪ
11 £¨B£©? £¨C£©8 £¨D£©?8 881112½âÎö£ºÅ×ÎïÏߵıê×¼·½³ÌΪ£ºx?y£¬Æä×¼Ïß·½³ÌΪ£ºy= -,¡àa=?£¬¹ÊÑ¡B¡£
a4a8£¨A£©
x2y2[¾ÙÀý2]ÈôÍÖÔ²2?2?1(a£¾b£¾0)µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬Ï߶ÎF1F2±»Å×ÎïÏßy2=2bxµÄ½¹
abµã·Ö³É5¡Ã3µÄÁ½¶Î£¬Ôò´ËÍÖÔ²µÄÀëÐÄÂÊΪ £º (A)
41725416 (B) (C) (D)175517
[À´Ô´:Zxxk.Com]½âÎö£ºÅ×ÎïÏßy2=2bxµÄ½¹µãΪF£¨
b£¬0£©£¬¡ßF½«Ï߶ÎF1F2·Ö³É5¡Ã3µÄÁ½¶Î£¬ 2¡à£¨
bb25+c£©£º£¨c -£©=5¡Ã3?c=2b?e=,Ñ¡D¡£
5222
[¹®¹Ì1]µãM(5,3)µ½Å×ÎïÏßy=axµÄ×¼ÏߵľàÀëµÈÓÚ6,ÄÇôÅ×ÎïÏߵķ½³ÌÊÇ( ) (A)y=12x2 (B)y=
1212
x»òy=-x (C)y=-36x2 (D)y=12x2»òy=-36x2
12362
À´Ô´:Zxxk.Com]x2y2??1µÄÓÒ½¹µãÖغϣ¬ÔòpµÄֵΪ [¹®¹Ì2] ÈôÅ×ÎïÏßy?2pxµÄ½¹µãÓëÍÖÔ²62A£®?2 B£®2 C£®?4 D£®4
2.Éæ¼°µ½Å×ÎïÏßÉϵĵ㵽½¹µã£¨×¼Ïߣ©µÄ¾àÀëÎÊÌâ³£Óö¨Ò壻ÓÐʱ£¬Å×ÎïÏßÉϵĵ㵽Óë×¼ÏßƽÐеÄÖ±ÏߵľàÀëÐèת»¯Îªµ½×¼ÏߵľàÀë¡£
x2[¾ÙÀý1]ÒÑÖªA£¨3£¬1£©£¬Å×ÎïÏßy?ÉÏÒ»µãP£¨x,y£©£¬Ôò|PA|+yµÄ×îСֵΪ ¡£
4x2½âÎö£ºÅ×ÎïÏßy?µÄ×¼ÏßΪ£ºy= -1£¬½¹µãF£¨0£¬1£©£¬¼ÇPÔÚÖ±Ïßy= -1ÉϵÄÉäӰΪQ£¬
4Ôòy=|PQ|-1=|PF|-1£¬|PA|+y=|PA|+|PF|-1£¬ÎÊÌâת»¯Îª£ºÇó|PA|+|PF|µÄ×îСֵ£¬Ò×¼û£º |PA|+|PF|¡Ý|AF|=3£¬µ±ÇҼȵ±F¡¢P¡¢A¹²ÏßʱµÈºÅ³ÉÁ¢£¬¹Ê£º|PA|+yµÄ×îСֵΪ2¡£ [¾ÙÀý2]ÒÑÖªÍÖÔ²EµÄÀëÐÄÂÊΪe£¬Á½½¹µãΪF1£¬F2£¬ y Å×ÎïÏßCÒÔF1Ϊ¶¥µã£¬F2Ϊ½¹µã£¬PΪÁ½ÇúÏßµÄÒ»¸ö |PF1|¹«¹²µã£¬Èô=e£¬ÔòeµÄֵΪ£º
|PF2|A£®
Q M P x F1 O F2 3326 B£® C£® D£® 3223
½âÎö£º¼ÇÅ×ÎïÏßµÄ×¼Ïßl½»xÖáÓÚM£¬PÔÚlÉϵÄÉäÓ° ΪQ£¬Ôò|F1M|=|F1F2|=2c£¬¼´lµÄ·½³ÌΪx= -3c£¬|PF2|=|PQ|£¬ÓÖ
[À´Ô´Ñ§¿ÆÍø]|PF1||PF1|=e£¬¼´=e£¬¡ßF1ÊÇÍÖÔ²µÄ×󽹵㣬¡à|PQ|ΪPµ½ÍÖÔ²×ó×¼ÏߵľàÀ룬¼´
|PQ||PF2|
a23lΪÍÖÔ²µÄ×ó×¼Ïߣ¬ÓÚÊÇÓУº-3c= -£¬Ñ¡A¡£ ?e=
c3[¹®¹Ì1] Ò»¶¯Ô²Ô²ÐÄÔÚÅ×ÎïÏßx2?4yÉÏ£¬¹ýµã(0 , 1)ÇÒÓ붨ֱÏßlÏàÇУ¬ÔòlµÄ·½³ÌΪ£¨ £©
A.x?1 B.x?11 C.y??1 D.y?? 1616x2y2[¹®¹Ì2] ÍÖÔ²C1£º2?2?1,(a?b?0)µÄ×ó×¼ÏßΪl£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Å×ÎïÏß
abC2µÄ×¼ÏßҲΪl£¬½¹µãΪF2£¬¼ÇC1ÓëC2µÄÒ»¸ö½»µãΪP£¬Ôò
|F1F2||PF1|= £¨ £© ?|PF1||PF2|1 B£®1 C£®2 D£®Óëa,bµÄÈ¡ÖµÓÐ¹Ø 222
3£®¹ýÅ×ÎïÏßy=2pxµÄ½¹µãÖ±ÏßlÓëÅ×ÎïÏßy=2px½»ÓÚA(x1,y1)¡¢B(x2,y2)Á½µã£¬¼Çס²¢»áÖ¤Ã÷£º
A£®
2pp2£¬|AB|=x1?x2?p?(ÆäÖÐ?ΪÏÒABµÄÇã½Ç£¬?=900ʱµÄÏÒy1y2??p£¬x1x2?2sin?42AB¼´ÎªÅ×ÎïÏßµÄͨ¾)£¬Ö¤Ã÷¸Ã½áÂÛʱΪ±ÜÃâÌÖÂÛбÂʲ»´æÔÚÇéÐΣ¬¿ÉÉèÖ±Ïß·½³ÌΪ£ºx=my+p(Æä2ÖÐmΪABµÄбÂʵĵ¹Êý)£»Å×ÎïÏß½¹µãÏÒÎÊÌâ³£Óö¨Ò壬È磺ÒÔ½¹µãÏÒΪֱ¾¶µÄÔ²Óë×¼ÏßÏàÇС£ [¾ÙÀý1]Å×ÎïÏßy2=2pxÉÏÏÒ³¤Îªa£¨a¡Ý2p£©µÄÏÒµÄÖе㵽yÖáµÄ¾àÀëµÄ×îСֵΪ£º ¡£ ½âÎö£ºÅ×ÎïÏßµÄ×¼ÏßlµÄ·½³ÌΪ£ºx= -
pp,½¹µãF£¨£¬0£©£¬¼ÇÏÒµÄÁ½¶ËµãΪA¡¢B£¬ABµÄÖеã22ΪM£¬ËüÃÇÔÚlÉϵÄÉäÓ°·Ö±ðÊÇA1£¬B1£¬M1£»ÓÚÊÇÓУº|AF|=|AA1|£¬|BF|=|BB1|£¬ Mµ½yÖáµÄ¾àÀëd=|MM1|-=
p1p1p1p=(|AA1|+|BB1|£©-=(|AF|+|BF|£©-¡Ý|AB|-
2222222a?p,µ±ÇÒ½öµ±A£¬B£¬F¹²ÏßʱµÈºÅ³ÉÁ¢¡£×¢£º¹ý½¹µãµÄÏÒ×î¶ÌÊÇͨ¾£¬³¤Îª2p£¬µ± 2[À´Ô´:Z¡ìxx¡ìk.Com]a<2pʱ£¬A£¬B£¬F²»¿ÉÄܹ²Ïß¡£
[¾ÙÀý2] ¸ø¶¨Å×ÎïÏßC£ºy2£½4x£¬FÊÇCµÄ½¹µã£¬¹ýµãFµÄÖ±ÏßlÓëCÏཻÓÚA¡¢BÁ½µã£®ÉèlµÄбÂÊΪ1£¬ÔòOAÓëOB¼Ð½ÇΪ £»
½âÎö£ºÅ×ÎïÏߵĽ¹µãΪF(1,0)£¬Ö±ÏßlµÄ·½³ÌΪ£ºx=y+1£»½«Æä´úÈëÅ×ÎïÏß·½³ÌµÃ£ºy2-4y-4=0ÉèA(x1,y1),B(x2,y2)£¬ÔòÓÐy1+y2=4,y1y2= -4£¬ÓÖx1=
[À´Ô´:Zxxk.Com]
1211y1, x2=y22,¡àx1 x2=(y1 y2)2=1. 44161(y1y2)2[(y1?y2)2?2y1y2] 16OA?OB=(x1,y1)¡¤(x2,y2)=x1x2+y1y2= -3.
[À´Ô´:Zxxk.Com]
22|OA|?|OB|?x12?y12?x2?y2?(x1x2)2?(y1y2)2?=41,¡àcos
¼ò»¯¼ÆË㣬ÓÐʱ»¹¿ÉÒÔ±ÜÃâ¶ÔÖ±ÏßбÂÊÊÇ·ñ´æÔÚµÄÌÖÂÛ¡£
[¹®¹Ì1]ABÊÇÅ×ÎïÏßy2?2xµÄÒ»Ìõ½¹µãÏÒ£¬|AB|=4£¬ÔòABÖеãCµÄºá×ø±êÊÇ£¨ £©
A£®2
B£®1
2C£®3
2D£®5
2
[¹®¹Ì2]¹ýÅ×ÎïÏßy2?2px(p?0)µÄ½¹µãµÄÖ±Ïßx?my?m?0ÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£¬ÇÒ¨SOAB£¨OΪ×ø±êԵ㣩µÄÃæ»ýΪ22£¬Ôòm+m=
4£®Ö±ÏßÓëԲ׶ÇúÏߵĹ«¹²µãÎÊÌâÒ»°ãÓ÷½³Ì×éµÄ½âÑо¿¡£Ö±ÏßÓëÇúÏßÓм¸¸ö¹«¹²µã£¬·½³Ì×é¾ÍÓм¸×é½â£»Ö±ÏßÓëԲ׶ÇúÏßÏàÇÐÌåÏÖΪ£ºÔڽⷽ³Ì×éµÄ¹ý³ÌÖУ¬¡°ÏûÔª¡±ºóµÃµ½µÄÒ»Ôª¶þ´Î·½³ÌÓÐÁ½¸öÏàµÈµÄʵ¸ù£¬¼´¨S=0£»Å×ÎïÏßµÄÇÐÏß»¹¿ÉÒÔÓõ¼ÊýÑо¿£¨ÊÓÅ×ÎïÏß·½³ÌΪ¶þ´Îº¯Êý£©¡£
2
[¾ÙÀý1]ÉèÅ×ÎïÏßy=8xµÄ×¼ÏßÓëxÖá½»ÓÚµãQ£¬Èô¹ýµãQµÄÖ±ÏßlÓëÅ×ÎïÏßÓй«¹²µã£¬ÔòÖ±ÏßlµÄбÂʵÄÈ¡Öµ·¶Î§ÊÇ£º£¨ £©
6
4
11£¬] B£®[£2£¬2] C£®[£1£¬1] D£®[£4£¬4] 22½âÎö£ºQ£¨-2£¬0£©£¬ÏÔȻֱÏßl бÂÊ´æÔÚ£¬¼ÇΪk£¬ÔòlµÄ·½³ÌΪ£ºy=k(x+2),´úÈëÅ×ÎïÏß·½³ÌµÃ£º
A£®[-[À´Ô´Ñ§&¿Æ&ÍøZ&X&X&K]kx+4(k-2)x+4k=0,¢Ùµ±k=0ʱ£¬·½³ÌÓн⣻¢Úµ±k¡Ù0ʱ£¬¨S=64(1-k)¡Ý0¼´-1¡Ük<0»ò0 22222 [À´Ô´:ѧ¿ÆÍø] [¾ÙÀý2]Èçͼ£¬ÉèÅ×ÎïÏßC:y?x2µÄ½¹µãΪF£¬¶¯µãPÔÚÖ±Ïßl:x?y?2?0ÉÏÔ˶¯£¬¹ýP×÷Å×ÎïÏßCµÄÁ½ÌõÇÐÏßPA¡¢PB£¬ÇÒÓëÅ×ÎïÏßC·Ö±ðÏàÇÐÓÚA¡¢BÁ½µã.Ôò¡÷APBµÄÖØÐÄGµÄ¹ì¼£·½³ÌΪ . 2½âÎö£ºÉèÇеãA¡¢B×ø±ê·Ö±ðΪ(x0,x0 )ºÍ(x1,x12)((x1?x0)£¬ y B A O l P G x ¡ßy/=2x£¬¡àÁ½ÇÐÏßбÂÊ·Ö±ðΪ£º2x0ºÍ2x1, 2ÓÚÊÇ£ºÇÐÏßAPµÄ·½³ÌΪ£º2x0x?y?x0?0; ÇÐÏßBPµÄ·½³ÌΪ£º2x1x?y?x1?0; ½âµÃPµãµÄ×ø±êΪ£ºxP?2x0?x1,yP?x0x1 2x0?x1?xP?xP£¬ 32ËùÒÔ¡÷APBµÄÖØÐÄGµÄ×ø±êΪ xG?2y0?y1?yPx0?x12?x0x1(x0?x1)2?x0x14xP?ypyG????, 3333¡àyp??3yG?4xG£¬½áºÏxp=xG´úÈëµãPËùÔÚÔÚÖ±Ïß·½³Ì£¬µÃµ½ÖØÐÄGµÄ¹ì¼£·½³ÌΪ£º 21x?(?3y?4x2)?2?0,¼´y?(4x2?x?2). 3×¢£ºÉÏÊöÇó¹ì¼£µÄ·½·¨³ÆΪ¡°´úÈë·¨¡±£¬ÎÊÌâµÄ»ù±¾½á¹¹ÊÇ£º¶¯µãNÔÚÒÑÖªÇúÏßC0ÉÏÒƶ¯£¬¶¯µãMËæÖ®Òƶ¯£¨°éËæµã£©£¬Ç󶯵ãMµÄ¹ì¼£·½³Ì£»Ò»°ã½â·¨ÊÇ£ºÑ°ÕÒ±»¶¯µãMµÄ×ø±ê (x,y)ÓëÖ÷¶¯µãNµÄ×ø±ê(x0,y0)Ö®¼äµÄ¹Øϵ£¬²¢ÓÃx,y±íʾx0,y0£¬ÔÙ´úÈëÇúÏßC0µÄ·½³Ì¼´¿É£»´Ë·¨Îª¡°²ÎÊý·¨¡±µÄÒ»ÖÖ£¬½èÖúM¡¢NÁ½µã×ø±êÖ®¼äµÄ¹Øϵ¼°ÇúÏßC0µÄ·½³ÌÏûÈ¥Á½¸ö²ÎÊýx0,y0¡£ 2[¹®¹Ì1] ÒÑÖªÖ±Ïßx?y?1?0ÓëÅ×ÎïÏßy?axÏàÇУ¬Ôòa?______. [¹®¹Ì2]¶ÔÓÚÅ×ÎïÏßC£ºy2£½4x£¬ÎÒÃdzÆÂú×ãy02£¼4x0µÄµãM(x0£¬y0)ÔÚÅ×ÎïÏßµÄÄÚ²¿.ÈôµãM(x0£¬y0)ÔÚÅ×ÎïÏßÄÚ²¿£¬ÔòÖ±Ïßl£ºy0y=2(x+ x0)ÓëÇúÏßC A.Ç¡ÓÐÒ»¸ö¹«¹²µã B.Ç¡ÓÐ2¸ö¹«¹²µã C.¿ÉÄÜÓÐÒ»¸ö¹«¹²µã£¬Ò²¿ÉÄÜÓÐÁ½¸ö¹«¹²µã D.ûÓй«¹²µã [ǨÒÆ]Ö±Ïßy=ax+1ÓëË«ÇúÏß3x2-y2=1µÄÁ½Ö§·Ö±ð½»ÓÚA¡¢BÁ½µã£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ ¡£ 5.½â¾öÖ±ÏßÓë¶þ´ÎÇúÏßÏཻÏÒµÄÎÊÌ⣬³£¡°Éè¶ø²»Çó¡±£¬¼´½«Ö±Ïß·½³ÌÓë¶þ´ÎÇúÏß·½³ÌÁªÁ¢·½³Ì×飬ÀûÓôúÈëÏûÔª·¨×ª»¯Îª¹ØÓÚx(»òy)µÄÒ»Ôª¶þ´Î·½³Ì£¬½«ÌâÖÐËù¸øµÄ¼¸ºÎÁ¿ÓÃΤ´ï¶¨Àí¡¢¡÷ 2¿Ì»®³öÀ´£»È磺ÏÒ³¤|AB|=1?k2|x1?x2|=1?k(x1?x2)2?4x1x2£¬£¨ÆäÖÐkΪֱÏßAB µÄбÂÊ£©£¬»ò|AB|=1?112=|y?y|1?(y?y)?4y1y2¡£É漰бÂʼ°ÆäÏÒÖеãµÄ121222kkÎÊÌâ³£Óá°µã²î·¨¡±£¬¼´Éè³öÏÒµÄÁ½¶Ëµã×ø±ê·Ö±ð´úÈë¶þ´ÎÇúÏß·½³Ì×÷²î£¬´ËºóÂÔ×÷±ä»¯£¨·ÖÀë ³öÏÒµÄбÂÊ£©£¬¼´¿ÉµÃµ½ÏÒµÄбÂÊÓëÏÒÖеãµÄºá×Ý×ø±êÖ®¼äµÄ¹Øϵ¡£ [¾ÙÀý1] ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy?x2ÉÏÒìÓÚ ×ø ±êÔµã£ÏµÄÁ½²»Í¬¶¯µã£Á¡¢£ÂÂú×ãAO?BO£¨ÈçͼËùʾ£©£®Ôò?AOBµÃÖØÐģǣ¨¼´Èý½ÇÐÎÈýÌõÖÐÏߵĽ»µã£©µÄ¹ì¼£·½³ÌΪ £» ½âÎö£ºÏÔȻֱÏßABµÄбÂÊ´æÔÚ£¬¼ÇΪk£¬ABµÄ·½³Ì¼ÇΪ£ºy=kx+b,(b¡Ù0), A(x1,y1),B(x2,y2),½«Ö±Ïß·½³Ì´úÈëy=x2µÃ£º x2-kx-b=0,ÔòÓУº¨S=k2+4b>0 ¢Ù,x1+x2=k ¢Ú, x1x2= -b ¢Û£¬ÓÖy1=x12£¬y2=x22 ¡ày1y2=b2£»¶øAO?BO? x1x2+ y1y2=0£¬µÃ£º-b+ b2=0ÇÒb¡Ù0£¬¡àb=1£¬´úÈë¢ÙÑéÖ¤£¬Âú×㣻 [À´Ô´:Z¡ìxx¡ìk.Com]¹Êy1+y2=k(x1+x2)+2=k2+2£»Éè¡÷AOBµÄÖØÐÄΪG(x,y)£¬Ôòx= x1?x2k= ¢Ü, 33y1?y2k2?222y== ¢Ý,ÓɢܢÝÁ½Ê½ÏûÈ¥²ÎÊýkµÃ£ºGµÄ¹ì¼£·½³ÌΪy?3x?¡£ 333×¢£ºÉÏÊöÇó¹ì¼£µÄ·½·¨³ÆΪ¡°²ÎÊý·¨¡±£¬Ò»°ãÏÈÉè·¨½«¶¯µã×ø±êÓá°²ÎÊý¡±±íʾ£¬ÔÙÏû²ÎÊý¡£ y x2y2??1µÄÓÒ½¹µãF2²¢´¹Ö±ÓÚxÖá [¾ÙÀý2]¹ýÍÖÔ² 259A F1 O B C x F2 µÄÖ±ÏßÓëÍÖÔ²µÄÒ»¸ö½»µãΪB£¬ÍÖÔ²Éϲ»Í¬µÄÁ½µãA(x1,y1),C(x2,y2)Âú×ãÌõ¼þ£º|F2A|¡¢|F2B|¡¢|F2C|³ÉµÈ²î ÊýÁУ¬ÔòÏÒACµÄÖд¹ÏßÔÚyÖáÉϵĽؾàµÄ·¶Î§ÊÇ ¡£ ½âÎö£º¶Ô|F2A|+|F2C|=5- 18ʹÓý¹°ë¾¶¹«Ê½µÃ£º54418x1+5-x2=?x1+x2=8.´Ëºó£¬¿ÉÒÔÉèACµÄÖд¹Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬Ê¹ÓÃΤ´ï¶¨Àí£»555Ò²¿ÉÒÔÓá°µã²î¡±£º¼ÇACÖеãM£¨4£¬y0£©, ½«A¡¢CÁ½µãµÄ×ø±ê´úÈëÍÖÔ²·½³Ìºó×÷²îµÃ£º ?y1?y2949x?x2£¬¡àkAC???,ÓÚÊÇÓУºACµÄÖд¹Ïߵķ½³ÌΪ£º ???125y0x1?x225y1?y225y016y0(x?4)£¬µ±x=0ʱ£ºy=-£¬´Ë¼´ACµÄÖд¹ÏßÔÚyÖáÉϵĽؾ࣬עÒâµ½£ºM 369y?y0?2991616y01616y0??1£¬µÃ- 55559259[¹®¹Ì1]ÒÑÖªÅ×ÎïÏßy2=4x,¹ýµãP(4,0)µÄÖ±ÏßÓëÅ×ÎïÏßÏཻÓÚA(x1,y1),B(x2,y2)Á½µã£¬Ôòy12+y22µÄ×î СֵÊÇ . [¹®¹Ì2]¹ýÅ×ÎïÏßy2?2px(p?0)ÉÏÒ»¶¨µãP£¨x0,y0£©£¨y0?0£©×÷Á½ÌõÖ±Ïß·Ö±ð½»Å×ÎïÏßÓÚA£¨x1,y1£©£¬B£¨x2,y2£©£¬ÈôPAÓëPBµÄбÂÊ´æÔÚÇÒÇãб½Ç»¥²¹£¬Ôò ´ð°¸ 1¡¢[¹®¹Ì1] B£¬[¹®¹Ì2]D£»2¡¢[¹®¹Ì1]C£¬[¹®¹Ì2]C£¬3¡¢[¹®¹Ì1]C£¬[¹®¹Ì2]2£»4¡¢[¹®¹Ì1] ¿Æ.Íø]y1?y2= ¡£ y0[À´Ô´Ñ§¡£¿Æ¡£Íø] [À´Ô´:Z¡£xx¡£k.Com][À´Ô´:ѧ. 1£¬[¹®¹Ì2]D£¬[ǨÒÆ]£¨-3£¬3£©£»5¡¢[¹®¹Ì1]32£¬[¹®¹Ì2]¡°µã²î¡±µÃ£º4kPA?y1?y02p2p?(x1?x0)£¬kPB?(x2?x0)£¬ÓÉPA£¬PBÇãб½Ç»¥²¹Öª x1?x0y1?y0y2?y0y1?y22p2p¹Ê????2 y?y??2y?120y1?y0y2?y0y0kPA??kPB¼´