无机材料科学基础习题与解答完整版 下载本文

4.9 非化学计量氧化物TiO2-x的制备强烈依赖于氧分压和温度:(a)试列出其缺陷反应式。(b)求其缺陷浓度表达式。

解:非化学计量氧化物TiO2-x,其晶格缺陷属于负离子缺位而使金属离子过剩的类型。

(a)缺陷反应式为:

2Ti Ti?/FONT>O2↑→2

OO→

(b)缺陷浓度表达式:

[ V]

+

+3OO

+2e′+O2↑

4.10试比较刃型位错和螺型位错的异同点。

解:刃型位错和螺型位错的异同点见表4-1所示。

表4-1 刃型位错和螺型位错的异同点 与柏格斯矢量的位置关系 位错分类 刃型位错 柏格斯矢量与刃性位错线垂直 螺型位错 柏格斯矢量与螺型位错线平行 刃性位错有正负之分 螺形位错分为左旋和右旋 引起晶体畸变和形成引起晶体畸变和形成应力场,且离位错线应力场,且离位错线越远,晶格畸变越小 越远,晶格畸变越小 只有几个原子间距的线缺陷 只有几个原子间距的线缺陷 位错是否引起晶体畸变和形成应力场 位错类型

第五章 固溶体习题与解答

5.1试述影响置换型固溶体的固溶度的条件。 解:

1. 离子尺寸因素

从晶体稳定性考虑,相互替代的离子尺寸愈相近,则固溶体愈稳定。若以r1和

r2分别代表半径大和半径小的两种离子的半径。当它们半径差< 15%时,

形成连续置换型固溶体。若此值在15~30%时,可以形成有限置换型固溶体。而此值>30%时,不能形成固溶体。 2、晶体的结构类型

形成连续固溶体的两个组分必须具有完全相同的晶体结构。结构不同最多只能生成有限固溶体。 3、离子的电价因素

只有离子价相同或复合替代离子价总和相同时,才可能形成连续置换型固溶体。 4、电负性因素

电负性相近,有利于固溶体的生成。

5.2 从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的差别。 解:从化学组成、相组成考虑,固溶体、化合物和机械混合物的区别 列下表5-1比较之 。

表5-1 固溶体、化合物和机械混合物比较 (以AO溶质溶解在B2O3溶剂中为例) 比 较 项 化学组成 固 溶 体 化 合 物 AB2O4 B2-xAxO(x =0~2) 单相 两相有界面 机 械 混 合 物 AO+B2O3 相组成 均匀单相 5.3试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点。列出简明表格比较。

解:固溶体、晶格缺陷和非化学计量化合物都属晶体结构缺陷,但它们又各有不同,现列表5-2比较之。

表5-2 固溶体、晶格缺陷和非化学计量化合物比较 分形成 类 原因 形成条件 缺陷反应 固溶式 溶解度 肖特基缺陷 热缺陷 弗伦克尔缺陷 晶 0格 热 振 0K以上 动 MM = XX= 掺 杂 溶 MX 只受温度控制 MX 固无限置溶换型固体 溶体 AO B1-xAxO 受温度控制x=0~1 解 < 15% , 2+A电价=B2+电价,AO结构同BO,电负性相近 间隙离子半径小,晶体结构开放,空隙大 YF3 掺杂量<固溶度,受温度控制 间隙型 有限固溶体 组分缺陷 2CaO < 30% ,Ca2+电价CaO≠Zr4+电价 环境中气氛性质和压力变化 掺杂量<固溶度,受温度控制 [h] ] O2(g)→[PO变价元素氧化物在氧化气氛中 2Fe+ V+OO 阳离子缺位 非化学计量阴离子化间隙 合物 O2(g)→变价元素氧化物在还原气氛中 ZnO+U(2h) [] [ ] 阳离子间隙 +2e′+O2(g) OO→[ V ] 阴离子缺位 +2+O2(g) 5.4试写出少量MgO掺杂到Al2O3中和少量YF3掺杂到CaF2中的缺陷方程。(a)判断方程的合理性。(b)写出每一方程对应的固溶式。 解: 3MgO2MgOYF32YF3

Y2Y2

2+

+

+3OO (1)

+2OO (2)

+F+2FF (3) +

+6FF (4)

(a)书写缺陷方程首先考虑电价平衡,如方程(1)和(4)。在不等价置换时,3Mg2+ →2Al3+ ;2Y3+ →3Ca2+。这样即可写出一组缺陷方程。其次考虑不等价离子等量置换,如方程(2)和(3)2Mg2+ →2Al3+ ;Y3+ →Ca2+。这样又可写出一组缺陷方程。在这两组方程中,从结晶化学的晶体稳定性考虑,在离子晶体中除萤石型晶体结构可以产生间隙型固溶体以外,由于离子晶体中阴离子紧密堆积,间隙阴离子或阳离子都会破坏晶体的稳定性。因而间隙型缺陷在离子晶体中(除萤石型)较少见。上述四个方程以(2)和(3)较合理。当然正确的判断必须用固溶体密度测定法来决定。 (b)(1)(2) (3)

(4)

5.5一块金黄色的人造黄玉,化学分析结果认为,是在Al2O3中添加了0.5mol%NiO和0.02mol% Cr2O3。试写出缺陷反应方程(置换型)及化学式。 解:NiO和Cr2O3固溶入Al2O3的缺陷反应为: 2NiOCr2O3

2

+

+2OO